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La percepción es la forma en que los humanos interpretan y compren-
den la información captada después de la interacción con el entorno que
les rodea, aprendiendo nuevas experiencias o reforzando otras ya vividas.
La percepción de la seguridad urbana se puede describir en cómo los hu-
manos presentan una reacción ante un determinado est́ımulo proveniente de
la apariencia visual o conocimiento previo sobre un cierto lugar (calles, zonas
urbanas, etc). A partir de esta idea, diversos estudios buscaron describir
dicho fenómeno teniendo como ejemplo más notable la teoŕıa denominada
“The Broken Window”, la cual estudiaba el comportamiento de las personas
frente a ambientes cuya apariencia visual era caótica. Aśı mismo, recien-
temente este estudio está siendo implementado utilizando diversos tipos de
datos, no solo limitándose a encuestas o experimentos sociales, con el obje-
tivo de determinar la relación entre la percepción urbana y caracteŕısticas
intŕınsecas de los ciudades; de los cuales, uno de los conjuntos de datos más
resaltables es Place Pulse. En este trabajo, se propone una metodoloǵıa
que permita analizar y explorar los datos de Place Pulse 2.0. Como re-
sultados principales, presentamos un análisis exploratorio de los datos, re-
saltando la organización y comportamiento de los datos. Además, presenta-
mos una comparación entre diferentes técnicas de aprendizaje supervisado
y semi-supervisado. Mostrando que un modelo Generative Adversarial Net-
works (GAN) presenta mejores resultados que técnicas convencionales.

Keywords: Deep Learning, Convolutional Neural Networks, GAN, features extraction,
urban perception.
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Abstract
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Perception is how humans interpret and understand information from
some environment. This information is captured after interacting with the
environment that surrounds them, learning new experiences, or reinforcing
others already lived. The perception of urban security can be described
in how humans present a reaction to a particular stimulus from the vi-
sual appearance or prior knowledge of a specific place (streets, urban ar-
eas, etc.). Based on the previous idea, various studies sought to describe
this phenomenon. A very notable example is the theory called “The Bro-
ken Window” which studied the behavior of people in environments whose
visual appearance was chaotic. Likewise, recently this study has been im-
plemented using various types of data, not only limited to surveys or social
experiments, to determine the relationship between urban perception and
intrinsic characteristics of cities. Which is one of the most noteworthy data
sets is Place Pulse. In this work, we propose a methodology that allows
the analysis and data exploration of Place Pulse 2.0. As the main results,
we present an exploratory data set analysis, highlighting behavior and out-
liers. Besides, we show the comparison and training results of supervised
and semi-supervised GAN-based models against other techniques. We are
showing that our Semi-Supervised GAN approach presents better results in
metrics and stability in dealing with this kind of data.

Keywords: Deep Learning, Convolutional Neural Networks, GAN, features extraction,
urban perception.
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Chapter 1

Introduction

In this chapter, we describe the main motivations we have had for the development of
our work. Additionally, we will also define the problem that we intend to address and
the objectives that we aim to achieve in this work.

1.1 Context and Motivation

“Cities are designed to shape and influence the lives of their inhabitants” (Lindal y
Hartig, 2013). Several studies have shown that the visual appearance of cities plays a
central role in human perception and reaction to the environment. A notable example
is the Broken Window theory (Wilson y Kelling, 1982) which suggests that visual
signs of environmental disorder, such as broken windows, abandoned cars, litter, and
graffiti, can induce negative social outcomes and increase crime levels. This theory
has had a significant influence on public policy strategies leading to aggressive policing
tactics to control manifestations of social and physical disorder. For example, in the
study conducted in the city of New York (Keizer et al., 2008), social experiments were
carried out on the perceived quality of life on the streets. These experiments compared
“impeccable”places such as shopping centers (clean walls, orderly and quiet) with other
places where there was the presence of graffiti, old or neglected streets, and litter on the
streets, concluding that in places where “rules are violated”, in the long term, social
norms are not respected. In conclusion, it is determined that the neglected visual
appearance negatively influences the environment (e.g., graffiti, litter scattered on the
streets, lack of cleanliness in the environment, etc.).

Similarly, other studies have shown that the visual appearance of urban spaces
affects the psychological state of its inhabitants (Lindal y Hartig, 2013). For example, a
psychological evaluation demonstrated that the presence of green areas in cities tends to
produce positive sensations in their inhabitants, such as safety, relaxation, tranquility,
etc. (Ulrich, 1979). On the other hand, through the study of 40 psychological reports
based on surveys and studies of the mental states of its inhabitants, it was also deduced

1



1.1. Context and Motivation

that urban disorder induces psychological distress, stress, and constant fear (Sampson
et al., 2002). In addition, it has also been shown that graffiti and buildings in poor or
abandoned conditions are directly related to the perception of insecurity (Schroeder y
Anderson, 1984).

Therefore, through various studies on the impact of the visual appearance of a
city on its inhabitants, it becomes of vital importance to understand the perceptions
and evaluations of urban spaces by people. In this sense, several studies have been
carried out on how the city and its visual appearance influence the behavior of the city.
For example, in “The Image of the City” (Lynch, 1984), cities (such as Boston, Jersey,
and Los Angeles) were divided into regions of importance (based on data on crime,
society, urban or non-urban sections, etc.), generating mental maps about the common
characteristics of these cities, indicating that the elements of each city are distinguished
among hundreds, thousands, or millions of other artifacts due to their unique shapes,
sizes, colors, etc. From this set of studies, a trend began in the psychological aspect to
study and evaluate the perception of inhabitants regarding the visual elements of the
city. In the work carried out by Nasar (1998), which was strongly related to finding
those regions/areas that were most pleasing to citizens, it was shown that in most
evaluations, green areas, themed streets, open spaces, shopping centers, and airports
predominated. In addition, areas that were rated as “not pleasant” for inhabitants were
buildings with unattractive styles, the presence of graffiti, parks without an established
form, and abandoned places. Additionally, other studies related to the disorder of the
city (Skogan, 1992), focused on the presence of garbage on the streets, abandoned
buildings, and cars parked in desolate corners, which contribute to the perception of
lack of control, fear, and insecurity in the city.

For this reason, studies have been conducted to understand the behavior of crime
and the feeling of insecurity related to the influence of crimes and delinquency in the
streets, which have been increasing in crowded places (e.g., tourist destinations). These
crimes have a long-term negative impact on how potential tourists perceive the level
of security in these places (Mawby, 2014; Mohammed y Sookram, 2015; Glaeser et al.,
2018). Additionally, over the years, information on crime rates and trends in various
cities has been collected, such as the website Numbeo (Numbeo, 2019), which informs
us about crime rates in all countries. Interestingly, it shows that South America has
higher crime levels than Asia and Europe (e.g. Caracas, Venezuela is ranked first on
the list). With this information on crime rates by city, various applications have been
developed, such as crime maps (USA, 2012; Google-Motorolla, 2019), data statistics
(EuroStat, 2016), and applications that predict criminal trends in areas (Stalidis et al.,
2018).

All these previous studies about the impact of visual appearance and crime rate
in cities have generated different approaches to identify which elements of the visual
appearance of a certain street influence urban perception (Andersson et al., 2017). For
example, quality of life, green areas, and safety, among others. In recent years, with
the advancement of various techniques to analyze information (e.g., images) and the
evolution of techniques such as deep learning, there has been evidence of not only
reports but also the creation of datasets and the trend toward predicting urban per-
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CHAPTER 1. Introduction

ception. An example case is the work “Which looks more safety?” carried out by the
MIT-Media Lab, creating the dataset Place Pulse (MIT-Media-Lab, 2013). The data
recorded in Place Pulse is about people’s urban perception based on an online survey;
in the survey, a volunteer must choose between two images of streets the safest one.
Based on this dataset, Li et al. (2015b); MIT-Media-Lab (2015) analyzed green areas
and their influence on urban perception. Additionally, techniques such as object de-
tection (e.g., graffiti) and the addition of other datasets, such as crime rates, levels of
violence, presence of trees, human development index, among others, were analyzed in
various works such as Porzi et al. (2015); Tokuda et al. (2019); Arietta et al. (2014);
Li et al. (2015b) that we will detail later.

Similarly, studies on the presence of objects and their correlation with urban
safety perception have also been conducted, showing that it is possible to divide cities
based on the most frequent types of objects (e.g., trees, garbage, buildings, fences,
graffiti, etc.) and the respective perception of safety (Zhang et al., 2018; Min et al.,
2019). As briefly presented in this section, there is great motivation for the study of
urban perception based on the characteristics and visual appearance of street images.
Such studies are based on statistics collected over a period of time, as well as models
that use these statistical data to make predictions about influential areas, the presence
of objects (e.g., graffiti, garbage), or relationships between places and crime statistics.
We have identified that in this type of study, the computational problem lies in how
to identify, differentiate, and relate the characteristics of street images with the
idea of urban perception, due to the similarity between images, the small number of
samples, etc. In our work, we will first focus on exploring and analyzing the data from
Place Pulse 2.0 (which is composed of street images). In this way, we will propose a
model based on Deep Convolutional Neural Network (DCNN) that allows us to solve
the difficulties mentioned in predicting urban perception effectively.

1.2 Objectives

In this section, we will present the objectives of this work in a concise manner. The
main motivation is based on research on how to predict the perception of urban safety.
Through the dataset Place Pulse 2.0, we propose a methodology that allows us to
perform this task. Therefore, we present below the objectives set out in this work:

1.2.1 General Objective

The general objective of this work is to describe, explore, analyze, and present the
evaluations of different models based on DCNN to make a prediction of the perception
of citizen security (e.g., safe and not safe) using the Place Pulse 2.0 dataset previously
mentioned.

Master’s Program in Computer Science - UCSP 3
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1.2.2 Specific Objectives

In particular, we can list the specific objectives briefly mentioned in the main objective:

• Propose a methodology that allows us to explore and analyze the Place Pulse
2.0 dataset, which is composed of 1.22 million comparisons of 111,390 images
from 56 different cities, containing six different comparison categories: safety,
lively, beautiful, wealthy, boring, depressing. Additionally, to analyze and present
the characteristics and behavior of the data. The aim is to identify possible
limitations that may be present in the dataset (which will be discussed in detail
later in this document), and the main category of study will be safety.

• Propose and present a Convolutional Neural Network (CNN)-based model for the
classification task. This model will allow us to efficiently differentiate the urban
perception of a street, taking into account the behavior and distribution of the
previously analyzed data. For the evaluations, we will use different approaches
such as transfer learning, fine-tuning, and generative adversarial networks.

1.3 Contributions

The present work presents two main contributions. The first contribution is the study
and analysis of Place Pulse 2.0, whose data consists of images of 56 cities associated
with an urban perception score (e.g., safety). The objective of this study is to explore
and analyze all the characteristics and distribution of the data. The analysis will expose
the criteria to be used to divide our data between the safe and unsafe categories, as well
as study whether it is possible to divide into regions through perception at different
“geographic generalization level” such as city, country, continent, and global.

The second contribution corresponds to a model based on DCNN, which will be
evaluated using various techniques and approaches, such as Supervised Learning and
Semi-Supervised Learning. This model will be able to differentiate, relate, and identify
the characteristics of the images and make the prediction of urban perception. This
will be further explained in Chapters 4 and 5, in which the description of the techniques
and models will be presented, as well as the obtained results.

In Figure 1.1, the implicit methodology that encompasses all the work carried
out and presented in this document is shown. This methodology allows us to carry out
both previously described contributions, starting from the calculation and grouping
of images into the two studied categories (safe and not safe) through the associated
scores for each one. In (I), we observe this data set with each image and its associated
score. From these scores, in (II), an exploratory analysis of the data is carried out
with the intention of understanding the behavior of the studied data, showing as a
result the disparity of data and distributions of the obtained associated scores. This
result corresponds to the article published in Felipe Moreno-Vera (2021b). In (III), the
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(IV) Model Comparison

(I) Input data {

{
(II) Exploratory Analysis

Score distributions

Data imbalance

{(III) Classifiers

Baseline Models

Supervised Learning Semi-Supervised Learning

F
C

-1
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Figure 1.1: The Work Methodology: We present the general steps to achieve the
specific objectives described. Starting from the dataset of images and their associated
scores, which is located in (I); in (II), we show part of the exploratory analysis carried
out on the data, highlighting relevant results such as the score distribution and data
disparity; in (III) we train and track the models using supervised and semi-supervised
approaches; finally in (IV) we report and compare the evaluation results obtained,
representing them through graphs with respect to the evaluated metrics values. The
purpose of this outline is to give the reader a general idea of this work, which will be
detailed in the next chapters. Source: The author.

respective training and validation of the data are carried out in different approaches
based on CNN models, to finally report, compare, and show the evaluations and metrics
obtained in each model in (IV). Each of these steps will be explained and discussed in
detail in the next chapters.

Finally, this work has three published papers: The first one was presented at the
IEEE/WIC/ACM International Conference on Web Intelligence (WI-IAT) ’21, which
covers all the analysis of the limitations present in this dataset, which will be explained
in detail in Chapter 3. The second publication was presented at the IEEE Mexican
International Conference on Artificial Intelligence (MICAI ’21), which focuses on the
analysis of the correlation between the presence of objects and the urban security
perception of street images. The third publication was presented at the International
Conference on Intelligent Computing (ICIC ’21), where some preliminary results of
supervised model training and a comparison between two model explanation methods
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(looking for the relevant regions for the prediction) were presented. You can find them
by following the references:

• Moreno-Vera, Felipe, Bahram Lavi, and Jorge Poco. “Quantifying Urban Safety
Perception on Street View Images”. In IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI-IAT ’21), December 14–17, 2021, Essedon, Aus-
tralia. (Felipe Moreno-Vera, 2021b).

• Moreno-Vera, Felipe, Bahram Lavi, and Jorge Poco. “Urban Perception: Can
We Understand Why a Street Is Safe?”. In Mexican International Conference on
Artificial Intelligence (MICAI ’21), October 25-30, 2021, Mexico City, Mexico.
(Felipe Moreno-Vera, 2021a).

• Moreno-Vera, Felipe. “Understanding Safety based on Urban Perception”. In
International Conference on Intelligent Computing (ICIC ’21), August 12-15,
2021, Shenzhen, China. (Moreno-Vera, 2021).

1.4 Document Structure

In Chapter 2, we present related work on (a) urban perception analysis, (b) feature
extraction and visual components, and (c) interpretation and visualization of extracted
features. In Chapter 3, we present the exploratory analysis of the Place Pulse 2.0
dataset. In Chapter 4, we describe the architectures of the models we will use for the
experiments on the data. In Chapter 5, we present and describe the results of the
training and evaluations performed based on our hypotheses. In Chapter 6, we present
the discussions and limitations of this work. Finally, in Chapter 7, we present the
conclusions obtained from our results.
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Chapter 2

Related Works

The studies on urban perception have been increasing due to the availability of more
geographic reference information on streets and cities (e.g. Google Street View) and
the search for a way to determine the level of perception (e.g. safety) of streets. Related
works can be grouped into three main categories: (a) analysis of urban perception, (b)
extraction of visual features and components, and (c) interpretation and visualization
of extracted features. As an introduction to the reader, we will first have a section on
background concepts where we address the minimum knowledge required to understand
the content of the document.

2.1 Background Concepts

In this section, we present some basic and necessary concepts to understand this doc-
ument. Some of the concepts to be addressed are supervised learning techniques,
unsupervised learning, and semi-supervised learning. We will also cover model inter-
pretation and some image classification, object detection, and segmentation tasks.

2.1.1 Machine Learning Techniques

We will briefly explain the learning techniques that will be mentioned in this document,
which are Supervised Learning, Unsupervised Learning, and Semi-Supervised Learning.

2.1.1.1 Supervised Learning

It is a machine learning method in which a data set is composed of “input data” and
associated “labels”, which can be called “training data” (Abu-Mostafa et al., 2012).
The data set of “n” samples can be defined as Isupervised = (x1, y1), (x2, y2), . . . (xn, yn)
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where each xi ∈ Rd is the i-th “feature vector” and its corresponding label (class) is
yi (Wikipedia, b). Some tasks performed with this technique are binary classification,
image classification, sentiment analysis, and linear regressions, among others.

2.1.1.2 Unsupervised Learning

It’s a machine learning method in which the training dataset does not contain any
labels or associated information (Abu-Mostafa et al., 2012). For this type of learning,
the dataset consists only of Iunsupervised = x1, x2, . . . xn, where each xi ∈ Rd is a “feature
vector”. Some tasks performed with this technique include clustering, dimensionality
reduction, outlier detection, among others.

2.1.1.3 Semi-Supervised Learning

It’s a machine learning method in which there is a dataset composed of “n” sam-
ples divided into two subsets as Ilabeled = (x1, y1), (x2, y2), . . . (xp, yp) and Iunlabeled =
x1, x2, . . . xq, such that Isemi−supervised = Ilabeled ∪ Iunlabeled; where each xi ∈ Rd, yi are
labels/classes, and p + q = n is the total number of samples. The main objective
of this type of learning is to learn relevant representations of the data (Goodfellow
et al., 2016). Some tasks performed by this technique can be data augmentation, data
generation, pseudo-labeling, as well as supervised and unsupervised learning tasks.

2.1.2 Machine Learning Tasks

We will briefly explain the tasks of machine learning: image classification, object de-
tection, and object segmentation.

2.1.2.1 Image Classification

Image classification is a machine learning problem that defines a set of classes (objects
to identify in images) and trains a model to recognize the objects using labels asso-
ciated with each image (Google-Developers, 2020). Some of the most notable models
are LeNet (Y. et al., 1990), AlexNet (Krizhevsky et al., 2012), ZFNet (Zeiler y Fergus,
2013a), GoogleNet (InceptionV1) (Szegedy et al., 2014), VGG-Net (Simonyan y Zis-
serman, 2014), ResNet (He et al., 2015), InceptionV3 (Szegedy et al., 2015), Xception
(Chollet, 2017), among others.
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(c) Segmentation(a) Classification

Cat Cat, Chicken, Dog Cat 1, Cat 2, Chicken, Dog

(b) Detection

Figure 2.1: We present the different machine learning tasks defined: a) Classification:
Identifies the features of a cat in the image. b) Object Detection: Identifies and locates
different objects within the same image. c) Object Segmentation: Identifies, locates,
and covers all the pixels where each object is found. Source: Stanford-CS231 Deep
Learning course (CS231n, 2022).

2.1.2.2 Object detection

The task of object detection is a computer vision technique to locate instances of objects
within images or videos (MatLab-Developers, 2020). Some well-known methods include
R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al.,
2017), Single Shot MultiBox Detector (SSD) (Liu et al., 2016), and You Only Look
Once (YOLO) and its derivatives (up to the current version 7) (Redmon et al., 2016).

2.1.2.3 Semantic Segmentation and Instance Segmentation

The task of image segmentation is a pixel clustering technique that groups pixels be-
longing to the same object within an image, also known as “pixel-level classification.”
In other words, it involves dividing an image into multiple regions (pixel groups) called
segments (Viso-AI, 2020). Some notable methods include DeconvNet (Noh et al., 2015),
U-Net (Ronneberger et al., 2015), DeepMask (Pinheiro et al., 2015), Dilated Convolu-
tions (Yu y Koltun, 2015), Pyramidal Scene Parsing Network (PSP-Net) (Zhao et al.,
2017), Mask RNN (Hu et al., 2017), Mask R-CNN (He et al., 2017), DeepLab (and its
derivatives) (Chen et al., 2017), among others.

2.1.3 Machine Learning Models

We will briefly explain linear and non-linear models, as well as their main components.
Additionally, we will cover model interpretation.
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2.1.3.1 Linear Models

Let a dataset of “n” samples be I = (x1, y1), (x2, y2), . . . (xn, yn) where each xi ∈ Rd

is called an independent variable and each associated yi are dependent variables. A
linear model studies the linear relationship between dependent variables y and inde-
pendent variables x and predicts values for new samples. These models are called linear
regressions, which describe the dependent variable yi = f(xi) =

∑d
j=1 ϕ(xij)βj + β0,

where β = (β0, β1, . . . , βd) ∈ R(d+1) are the slopes of each variable ϕ(xij). Likewise, the
linear relationship between each yi and xi is observed through the variables β and the
functions ϕ() which can be linear or non-linear functions (Wikipedia, a).

One way to evaluate the efficiency of these models is by using the error obtained
from the defined cost function of the form Err = L(yi, f(xi))+R(βi), where L(yi, f(xi))

is the cost function, R(βi) =
(1− ρ)

2
||βi||2+ρ||βi||1, where ρ ∈ [0, 1] is the regularization

parameter. Furthermore, it is observed that: (a) If ρ = 0 it is L2 regularization or also
called Ridge (Tikhonov, 1943), (b) If ρ = 1 it is L1 regularization or also called LASSO
(Tibshirani, 1996) and (c) If 0 < ρ < 1 it is Elastic Net regularization (Zou y Hastie,
2005).

Likewise, the cost function L(y, f(x)) changes depending on the type of task to
be performed. In the classification task we have the following cost functions:

• The Logistic Regression method has the cost function defined by L(y, f(x)) =∑n
i=1[yi log(f(xi)) + (1 − yi) log(1 − f(xi))], this function is also called Binary

crossentropy.

• The Support Vector Classification method has the cost function defined by
L(y, f(x)) =

∑n
i=1max(0, 1 − yif(xi)), this function is also called hinge. It

can also be defined as L(y, f(x)) =
∑n

i=1max(0, 1− yif(xi))
2 (huber or squared

hinge).

In the regression task, we have the following cost functions:

• The Linear Regression method has the cost function defined by L(y, f(x)) =∑n
i=1 ||yi − f(xi)||22, this function is also called Least Squares.

• The Support Vector Regressionmethod has the cost function defined by L(y, f(x)) =∑
i = 1n max(0, |yi − f(xi)|), this function is also called epsilon-sensitive.

2.1.3.2 Non-Linear Models

A non-linear model studies the non-linear relationship between dependent variables yi
and independent variables xi. These models are called non-linear regressions, which
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describe the dependent variable as yi = f(xi, θi) + ϵ, where θ are other unknown
parameters (Wikipedia, 2020). Additionally, the independent variables xi can be of
any dimension, for example in images we would have the dimension r × c × 3, where
r × c is the size of the image and 3 is the color scale.

Similarly to what was explained for linear models, the way to evaluate non-linear
models is through the error calculated from the cost function defined by E(θi) =
L(yi, f(xi, θi)). In the case where our xi are images, the approximation function can be
a deep convolutional network of the form f(xi, θi) = D(A1(P1(C1(...An(Pr(Cs(...))))))),
where Cj() are convolution operations (also called filters), Pj() are pooling functions,
Dj() is a linear combination (called dense layers), and Aj() are activation functions.
Below we describe each one:

• Convolution: hij(f, g) = (fg)(i, j) =
∑∞

m=−∞
∑∞

n=−∞ f(m,n)g(i + m, j + n),
where f(m,n) corresponds to the pixel at position (m,n) of the input image
and g(i+m, j + n) are the corresponding pixels of the convolution matrix. This
function is also called a “filter”.

• Pooling: is a technique for resizing a matrix I ∈ RW×H through a Pooling sub-
matrix P ∈ Rwp×hp . The variable stride is defined as the distance between each
pixel. Let Ii,j be the position of pixel (i, j) of the image I and also the pooling
matrix. To simplify the notations, we define k = 0, . . . ,W and l = 0, . . . , H as
the positions of pixels in rows and columns. The following pooling operations are
defined:

– Max Pooling: Returns a matrix of dimension (⌊W−wp

stride
⌋ + 1, ⌊H−hp

stride
⌋ + 1).

Each value of the matrix will be of the form: max
k≤i≤k+wp,l≤j≤l+hp

Ii,j.

– Global Max Pooling: Returns a value associated with a matrix of the form:
max
i,j

Ii,j.

– Average Pooling: Returns a matrix of dimension (⌊W−wp

stride
⌋+1, ⌊H−hp

stride
⌋+1).

Each value of the matrix will be of the form: 1
wp∗hp

∑k+wp

i=k

∑l+hp

j=l Ii,j.

– Global Average Pooling: Returns a value associated with a matrix of the
form: 1

WH

∑W
i=0

∑H
j=0 Ii,j (Lin et al., 2013).

• Activation Functions: are functions used to confine a set of values to a specific
domain, the most well-known are:

– Hyperbolic Tangent (Tanh): f(x) = ex−e−x

ex+e−x .

– Sigmoid: f(x) = 1
1+e−x .

– ReLU: f(x) = max(0, x).

– Linear Function (Linear): f(x) = x.
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(a) (b) (c)

Figure 2.2: Prediction: Dog; explanations presented by the methods (a) CAM, (b)
GBP, and (c) guided-CAM. Source: grad-CAM (Selvaraju et al., 2017).

2.1.4 Explanation Methods

Explanation methods allow us to understand the behavior and decision-making process
of a model. They can be divided into two main classes: white-box methods, which
are easier to analyze, such as linear models, and black-box methods, which are more
challenging to analyze due to their complexity and large number of parameters, such as
deep neural networks (Molnar, 2022). Some explanation methods of this type include
Convolution Visualization (Zeiler y Fergus, 2013b), smooth (Ancona et al., 2017),
saliency maps (Simonyan et al., 2013), and class activation maps (CAM) (Zhou et al.,
2014), among others.

To understand the calculation, let’s define x ∈ Rd as a feature vector of an
image, a model S : Rd → RC where C is the number of classes to evaluate, and
an explanation method E : Rd → Rd that defines an explanation map. Then, a
gradient-based explanation for a variable x is of the form Egrad(x) = ∂S

∂x
, where the

gradient quantifies how much each dimension of x changes the prediction S(x) in a
small neighborhood around x (Adebayo et al., 2018). Some gradient-based methods
include:

• Gradient Input: The gradient calculation is of the form: x⊙ ∂S
∂x
, which reduces

visual diffusion and gradient saturation (Shrikumar et al., 2016).

• Integrated Gradients: The gradient calculation is of the form: (x−x̄)x
∫ 1

0
∂S(x+α(x−x̄))

∂x
,

also reducing gradient saturation through scale integral, x̄ represents the absence
of features in x (Sundararajan et al., 2017).

• CAM (Class Activation Map): The gradient calculation is of the form: Mcam =∑
k w

c
kF

k, where Mc is a class activation map of class c, k represents a convolu-
tional layer, and F k is the result of applying GAP (F k = 1

Z

∑
i

∑
j A

k
ij) to each

convolution, where Ak is the filter corresponding to the k-th convolution, (i, j)
represent the pixels of matrix Ak, and Z is the product of the dimensions of Ak

(Zhou et al., 2016a).
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• GradCAM: Taking into account the result obtained in CAM, αc
k =

1
Z

∑
i

∑
j

∂Mc

∂Ak
ij

is defined as the GAP of the gradients of CAM called partial linearization, finally
Mgradcam = ReLU(

∑
k α

c
kA

k) (Selvaraju et al., 2017).

• GBP (Guided Backpropagation): The calculation is as follows:

Bt
i = (f t

i > 0) × (Bt+1
i > 0) × Bt+1

i , where Bt+1
i = ∂fout

∂f t+1
i

, f t+1
i = relu(f t

i ) is the

activation of the current layer of the network, and Bt
i is called the GBP of layer

t and i is a sample (Springenberg et al., 2014).

• Guided GradCAM: It is the element-wise product between GradCAM and GBP
(Selvaraju et al., 2017).

• SmoothGrad (SmoothGrad (SG)): Reduces noise and visual diffusion in saliency
maps with a weighted sum of explanations of noisy copies of x. For an expla-
nation E, we have: Esg = 1

N

∑N
i=1 E(x + gi) where gi ∼ N (0, σ2) is the noise

(Smilkov et al., 2017).

In Figure 2.2, an example of some methods such as CAM, Grad-CAM, and GBP is
shown. These methods are widely used to interpret models that use images as training
data.

In this section, we have presented concepts such as learning techniques, linear
and nonlinear models, as well as the operations involved in each. These terms and
definitions will be used later in this document, especially from the next sections where
we address related works. As a reminder, the following sections are divided into (a)
urban perception analysis and (b) feature extraction and visual components; and (c)
interpretation and visualization of extracted features.
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Figure 2.3: Place Pulse website, where information about street perception is collected
by choosing between two street images. Source: Place Pulse (Salesses et al., 2013).

2.2 Urban Perception Analysis

In this section, we will discuss related works on urban perception analysis using various
methods to relate the visual appearance of streets and other non-visual data, such as
crime rates. In 2011, the MIT Media Lab initiated the project called Place Pulse (Sa-
lesses, 2012), which collected information about images from various volunteers with the
aim of answering the following question: “Which Place Looks Safer/Unique/Wealthy?”.
Each volunteer had to choose between two random images downloaded from the cities
of Boston, New York, Linz, and Salzburg. The work conducted a study on the percep-
tion differences of each of the evaluated cities based on their visual aspects, creating a
quantitative measure of the contrasts within a city. As important results, we have the
creation of the Place Pulse dataset version 1.0 and the finding that the visual aspects
between Boston and New York were more pronounced than between Linz and Salzburg.
Furthermore, when compared with crime data within these cities, it was found that
places with similar visual appearance had similar crime rates.

In 2014, the Place Pulse 1.0 dataset spurred an increase in the number of studies
and analyses on urban perception, such as learning specific characteristics to predict
the safety level of a street. One such study (Ordonez y Berg, 2014) used comparisons
regarding the categories of safety, uniqueness, and wealth. In addition to the data
provided by Place Pulse 1.0, images were collected from New York (8863), Boston
(9596), and 2 additional cities: Chicago (12,502) and Baltimore (11,772). Training
was performed with the original cities of New York and Boston from Place Pulse 1.0.
This work presented two models, a Support Vector Machine (SVM) (Boser et al., 1992)
classifier and a Support Vector Regressor (SVR) (Smola y Schölkopf, 2004) model for
predicting scores (numbers between 0 and 10) and perception, respectively. Both mod-
els were trained with l2 regularization and used feature extractors such as GIST (Oliva
y Torralba, 2001), SIFT + Fisher Vectors (Perronnin et al., 2010), Deep Convolutional
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Figure 2.4: Results of regression evaluation on Place Pulse 1.0: (left) scores for the
city of New York; (middle) regression predictions in New York using a model trained
on New York; and (right) regression predictions in New York using a model trained on
Boston. Source: (Ordonez y Berg, 2014).

Activation Feature (DeCAF) (Donahue et al., 2014).

For training, they used 5-fold cross-validation trained on each city and performed
comparisons by evaluating on others. For labeling, they assigned scores below 5.0 as
-1, otherwise 1. The main results showed that feature extraction with a deep network
like DeCAF outperformed other methods such as GIST or SIFT + Fisher Vectors.
Another finding was that the regressor had better accuracy for images with scores
between 4-7. Additionally, they analyzed the collective perception prediction using
the K-Nearest Neighbors (KNN) method (see Figure 2.4), showing that nearby regions
have similar predictions. This work marks the beginning of using Place Pulse 1.0 with
Deep Learning.

Later, Li et al. (2015a), using data from the cities of Boston and New York
from Place Pulse 1.0, propose an analysis and exploration of aesthetics, environment,
and psychological benefits in urban residences, prioritizing how green areas can help
increase the perception of safety on streets in places such as residences, industrial
areas, public places, institutions, etc. To process the images and filter green areas,
they normalized the values of the Red-Green-Blue (RGB) channels and calculated the
parameter Green Index defined as GI = 2G− R − B. Then, through the Otsu (Otsu,
1975) filter and other pixel operations to remove brightness and contrast (shadows).
Also, using the respective latitude and longitude of each image, using MassGIS Data-
Land Use 2005 (Massachusets-Office-Goverment, 2005), they downloaded other Field
of View (FOV), thus increasing the specially selected images from places such as:
residential areas, public places (hospitals, universities, schools, parking lots, museums,
prisons, etc.), industrial areas, cemeteries, open spaces, and recreation areas. Finally,
with a linear regression, they related the presence of green areas and perception scores,

Master’s Program in Computer Science - UCSP 15



2.2. Urban Perception Analysis

Figure 2.5: Different directions and angles of a street in Boston. The rows represent
variations in height, and the columns represent the viewpoint. Source: (Li et al.,
2015a).

thus demonstrating the importance and positive influence of green areas in places with
high scores. As conclusions, it was presented that green areas impact positively on the
perception of safety in most cases, however, they can be perceived as unsafe because
they obstruct the view of a place contrasting with the theories presented in Fisher
(1992); Nasar et al. (1993).

Another study strongly based on Place Pulse 1.0 was the development of the
Wmodi platform (Acosta y Camargo, 2018b). This platform, similar to Place Pulse
1.0, collects information through surveys (see Figure 2.6 (a)), with the only difference
that Wmodi uses images from the city of Bogotá, Colombia. As a pre-selection of
images, they used the SIFT extractor (Lowe, 2004) to determine if there were mini-
mal features or if they were only walls or black backgrounds, resulting in 5505 images.
Likewise, the website obtained around 17,703 comparisons, where each image was com-
pared on average 6 times. Additionally, they collected 5657 ties, 5946 safe, and 6100
unsafe perceptions. For the processing of scores, they used the TrueSkill algorithm
(Herbrich et al., 2007), which enabled online score updating, generating a map of secu-
rity perception scores (see Figure 2.6 (b)). They used the VGG19 network (Simonyan
y Zisserman, 2014) and the GIST and HOG methods as feature extractors to then be
trained in an SVR. The main contributions are: (i) the perception of high insecurity is
related to places with few green areas, places with high traffic density, main avenues,
roads under bridges, dirt roads; (ii) the Wmodi platform.

Similarly, we have studies focused on understanding and exploring the correla-
tion between urban perception and crime statistics such as StreetNet (Fu et al., 2018).
For this study, a dataset was constructed using indices of theft, aggravated robbery,
petty theft, armed robbery, unauthorized entries into homes, etc. from the cities of
New York and Washington DC. To rank the severity of crimes, the Preference Learning
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(a)

(b)

Figure 2.6: (a) Wmodi website for collecting information about street perception. (b)
Map of safety perception scores for the Chapinero district (Bogotá, Colombia). Source:
(Acosta y Camargo, 2018a).

method (Har-Peled et al., 2003) was used in each location, in addition to geographical
references of the surrounding streets using the CycloMedia GlobalSpotter API (Cyclo-
Media, 1980), where the central point is called the “sample point”. In Figure 2.7 (b),
geographical references can be observed from each sample point. From these sample
points, the Direction based Street View Retrieval (DSVR) algorithm is used to group
crimes committed in a certain established radial zone. In Figure 2.7 (c), it can be
observed how the points where crimes occurred are grouped around a reference point.
Notable results include: (i) creation of datasets for Washington DC and New York
City (NYC) called DC-1k, DC-2k, NYC-1k, and NYC-2k generated using a radius of
1000 and 2000 feet respectively; (ii) the StreetNet model, which allows predicting what
type of possible crime could occur based on crime data that occurred around and the
characteristics of the location (see Figure 2.7 (a)).

In this section, related works on the study and analysis of urban perception were
presented, some of which are based on the Place Pulse 1.0 dataset. Most of these works
aim to relate some feature of the city to perception scores. Additionally, other datasets
related to crime rates and visual aspects present in certain cities were utilized. In this
paper, we focus on the study of the Place Pulse 2.0 dataset, which we will describe
later, presenting an analysis of urban perception using the proposed methodology that
we will describe in the following chapter.
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(b) (c)

(a)

Figure 2.7: Results: (a) Prediction of potential crimes based on a particular street
view. (b) Geographical reference points taken topologically from a committed crime.
(c) Geographical reference points obtained after applying the DSVR algorithm. Source:
(Fu et al., 2018).

2.3 Feature Extraction and Visual Components

In this section, we present works related to urban perception but more focused on fea-
ture extraction. We also mention that we can divide them into two main categories:
those of low/mid-level, which would be conventional methods, and high-level ones,
which use deep networks for extraction. Some of the low/mid-level methods are GIST
(Oliva y Torralba, 2001), SIFT + Fisher Vectors (Perronnin et al., 2010), Histogram of
Oriented Gradients (HOG)+Color descriptor Dalal y Triggs (2005), Geometric Proba-
bility Map (Hoiem et al., 2007) y Color Histograms (Novak et al., 1992; Chakravarti y
Meng, 2009) y métodos de alto nivel son AlexNet (Krizhevsky et al., 2012), VGGNet
(Simonyan y Zisserman, 2014), ResNet (He et al., 2015), PlacesNet (Zhou et al., 2014).

2.3.1 Low-level feature extraction

One of the most noteworthy works is “What makes Paris look like Paris?” (Doersch
et al., 2012). In this study, the aim is to understand and identify the differences between
various cityscapes in Europe. As an experiment, a questionnaire was conducted with
11 participants using 100 randomly selected images downloaded from Google Street
View (GSV), with 50 % from Paris and the rest from different cities. The questionnaire
involved determining whether a particular street belonged to Paris or not (ignoring
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(a) (b) (c)

Figure 2.8: (a) Paris, France. (b) Prague, Czech Republic. (c) London, England.
Visual correspondence between each element present in each city. Source: (Doersch
et al., 2012).

any text present in the image). On average, they correctly identified around 79 %
of the images. However, when text present in the images was taken into account,
the average accuracy increased to 90 %. This demonstrates that people are sensitive
to information within an image (e.g., signs, posters), aiding in quicker identification
of the city. For the final experiment, 10,000 images per city were collected from 12
cities: Paris, London, Prague, Barcelona, Milan, New York, Boston, Philadelphia,
San Francisco, Sao Paulo, Mexico City, and Tokyo. For the study, they divided the
information into two categories: (i) images of Paris, and (ii) images of the other cities.
They also assumed that visual patterns such as trees, cars, sky, etc., would exist in
different cities and thus were not taken into account.

Using HOG+Color descriptor, features were extracted, and then grouped using
Locality-Sensitive Hashing (Gong et al., 2012). For the creation of the groups, 25,000
images from different cities were randomly selected and subjected to KNN, resulting
in 20 groups, of which only those with the highest proportion of nearest neighbors
from the Paris set were kept. From the total 25,000, it was reduced to 1000 images as
centers. For training the features, SVM with 3-fold cross-validation was used. Notable
results include: (i) it was evident that in many cities in Europe, very similar visual
appearances were observed. In Figure 2.8, the visual attributes corresponding to Paris,
Prague, and London are observed, showing slight but marked differences between the
elements; (ii) a robust method to differentiate the characteristics of all the studied
cities, despite being quite similar.

Another work on the exploration of visual components was “What Makes London
Look Beautiful, Quiet, and Happy?” (Quercia et al., 2014); aiming to gather informa-
tion about the perception of cities, and also to analyze a factor of collective perception
with the question “What percentage of people would agree with you?” and colors (e.g.
of the streets) associated with that perception. In Figure 2.9 (a), the Urbangems web-
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(a)

(b)
Figure 2.9: (a) Urbangems website; (b) The results of the visual words associated with
the beauty category, where the red points represent an image. Source: (a) (UrbanGems,
2014), (b) (Quercia et al., 2014)

site (UrbanGems, 2014) can be seen where people had to choose between two images
out of a total of 700,000 and give a percentage of people who would agree in the same
way. Through the responses of 3301 users where each user performs a round com-
posed of 10 comparisons, obtaining on average a preference about beauty (171), quiet
(12), and happy (16). The images were collected through GSV from places near metro
stations within a radius of 300 meters.

Once the information equivalent to 17,261 comparisons was obtained, we pro-
ceeded to analyze which colors have the greatest correlation with the images of beauty
(beauty), quiet (silent), and happiness (happiness) using the RGB channels of the im-
age, as well as the textures with Global Edge Histogram (GEH) Park et al. (2000) with
the region-based MPEG-7 Edge Histogram descriptor Manjunath et al. (2001) tech-
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Figure 2.10: Results of attribute prediction. The first row shows the results of the
model trained on San Francisco and tested on Philadelphia, the second row shows a
case of error when the house price prediction model trained on Boston is tested on
Philadelphia. The prediction error is due to some visual elements present in Boston
that influence the “high prices” category not being present in Philadelphia. Source:
(Arietta et al., 2014).

nique. Taking into account the points where users clicked within the image (called
points of interest), they divided the images into 4 contours: horizontal, vertical, diag-
onal, and non-directional. To analyze the points of interest in the images, Speeded Up
Robust Features (SURF) Bay et al. (2006) was used, grouping them with the K-means
algorithm into 500 groups of visual word Jurie y Triggs (2005). In Figure 2.9 (b) you
can see the visual words or points of interest of an image, these points can describe an
image. As results they presented: (i) the selected points associated with the beauty
category are Victorian houses, public gardens, residential and the least associated are
government buildings, bridges, and roads. (ii) the points associated with the silent
category are trees, hedges, forests, and residential windows, on the contrary, the least
associated are construction sites and buses; (iii) the points associated with happiness
are trees, buses, and people, on the contrary, the least associated are bridges, streets,
and wire fences.

Another work focused on visual appearance is City Forensics (Arietta et al.,
2014), which proposes a method to predict, identify, and corroborate a correlation
between the visual appearance of a city and its non-visual attributes. The data for
“non-visual attributes”include violent crime rates (CrimeMapping, 2012), robbery rates
(CrimeReports, 2013), house prices, population density, presence of trees (UrbanFor-
est, 2014), presence of graffiti (obtained from reports), and perception of danger. To
obtain more data, panoramic images with a 360-degree FOV and a 20-degree tilt angle
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Figure 2.11: Another result is the prediction of safe routes (purple), avoiding the
majority of robbery events (red circles) in Chicago, differentiating from the direct
route (green). To calculate this route, the robbery rate in Chicago was predicted using
the model trained in San Francisco, which contains visual elements related to traffic
where robberies are common. In contrast, the predicted route contains green areas and
trees, which have a low robbery rate. Source: (Arietta et al., 2014).

were downloaded using GSV from the cities of San Francisco, Chicago, and Boston.
Between 30,000 and 170,000 panoramas were obtained per city, of which 10,000 were
used for training. Visual attributes were identified using HOG+Color descriptor, and
labels were annotated for each non-visual set (e.g., for house prices, values above the
mean were annotated as positive and below as negative). Visual attributes were in-
terpolated using the latitudes and longitudes of the images through the Radial Basis
Function (RBF) method (Broomhead y Lowe, 1988), which was also the model used to
train 10,000 samples with a ratio of 2000 positive and 8000 negative samples. Finally,
an SVM was trained, refined with 3 iterations of the hard negative mining technique
(Felzenszwalb et al., 2008) to relate each panorama to a non-visual attribute. As a
notable result, there is a correlation between the visual appearances of each city and
their respective crime rates, robbery rates, house prices, population density, presence
of trees, presence of graffiti, and perception of danger. Additionally, three applications
were identified: safe routes (see Figure 2.11 first column), city limits or divisions (see
Figure 2.10 third column), and the ability of some visual components to describe a city
(e.g., graffiti, bricks, windows with styles, and light poles describe Chicago).

In 2014, using data from the cities of New York and Boston from the Place Pulse
1.0 dataset, StreetScore (Naik et al., 2014) presented a study comparing which feature
extractor would be suitable for the images in that dataset. The compared extrac-
tors were GIST, Geometric Probability Map, Texton Histograms (Martin et al., 2001),
Color Histograms (Novak et al., 1992; Chakravarti y Meng, 2009), Geometric Color
Histograms (Rao et al., 1999), HOG (Dalal y Triggs, 2005), Dense SIFT (Lazebnik
et al., 2006), LBP (Ojala et al., 2002), Sparse SIFT histograms (Sivic y Zisserman,
2004), and SSIM (Matas et al., 2004), which were trained in an SVR. The TrueSkill
algorithm was used to process the scores, highlighting that on average each image was
compared only 6 times, which was far from the optimal convergence between 12 and 36
comparisons. For the evaluations, approximately 200 images were downloaded for ev-
ery 1.6 km2, thus achieving the broadest coverage of a city, resulting in approximately
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Figure 2.12: Results of perception score predictions in the city of New York: generation
of a HPM where scores range from 0 to 10, with a red dot indicating the perception
of an unsafe street and a green dot indicating the perception of a safe street. Source:
(MIT-Media-Lab, 2014).

1 million images from 27 different cities in the USA. The results showed that Color
Histograms, GIST, and Geometric Color Histograms performed the best. Based on this
result, StreetScore was defined, which is a concatenation of the features extracted by
these three methods. In Figure 2.12, the result of score prediction using StreetScore
trained in Boston and New York, and evaluated in New York, can be observed.

Continuing the study presented in Li et al. (2015a) (described in the previous
section), Li et al. (2015b) extended the analysis of green areas in panoramic images,
aiming to identify the presence of green areas on streets, as well as their influence on
the perception of safety. They modified the FOV by changing the angles to 0, 60, 120,
180, 240, and 300 degrees. Using images from the cities of East Village, Manhattan
District, and New York, they located 300 randomly generated locations with ArcGIS
10.2 (ArcGis, 1999), with a separation of 300 meters between each location, resulting in
approximately 28,448m2 where every 100 meters provide a global view of a location (see
Figure 2.13 (a)). Image processing was performed using the Green View Index (GVI)
method (Yang et al., 2009) and operations through the RGB channels of each image
at the pixel level as follows: GI = (G−R) ∗ (G−B), where if GI is positive, that pixel
is considered vegetation. Finally, an average is obtained between the number of pixels
considered as vegetation and the total number of pixels found in all evaluated images.
As a result, the following was presented: (i) a Human Perception Mapping (HPM) of the
mentioned cities highlighting the association between green areas and robberies, where
a higher concentration of vegetation indeed corresponds to a lower number of robberies;
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(b)

(a)

Figure 2.13: (a) Distance map taken between each image, (b) Treepedia website with
green area indexes of trees in the city of Boston. Source: (a) (Li et al., 2015b), (b)
(MIT-Media-Lab, 2015)

(ii) the Treepedia website (MIT-Media-Lab, 2015) (see Figure2.13 (b)), where this
analysis was extended to 30 cities.

2.3.2 High-level feature extraction

Following with high-level feature extraction methods, here we address the concepts of
deep networks, whether as feature extractors or for training from scratch. One of these
works was carried out by Porzi et al. (2015), which proposes to identify visual elements
and assign a respective perception “ranking” (e.g., safety) to street images provided by
the Place Pulse 1.0 dataset and other datasets such as: (i) ImageNet (Deng et al.,
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(a)

(b)

Figure 2.14: (a) Visual representation of the pooling method showing the results for
different “n” (pooling factor), it is observed that if η = 0 it is the classical max pooling
and if η = 1 is is average pooling; (b) the most relevant patterns found with the pooling
technique and highly related to the perception of safety found by the network AlexNet-
Places205 + rCNN2. Source: (Porzi et al., 2015)

2009) with 1000 classes of animals and objects; (ii) Places205 (Zhou et al., 2014) with
205 categories of scenes or environments (e.g., restaurant, forest, cafes, etc.); and (iii)
SUN (Xiao et al., 2010) with objects and scene categories. Using TrueSkill in the scores
and SSIM, GIST, HOG, and AlexNet (Krizhevsky et al., 2012) and its rCNN variant
(proposed by the authors) with weights previously trained on SUN, Places205, and
ImageNet. The authors proposed a pooling layer defined by

∏
ηi
(M) = 1+⌈ηi(wz−1)⌉

where 0 ≤ ηi ≤ 1 and M ∈ R(w×z) resulting from the convolutions. In Figure 2.14 (a),
the results of applying this pooling with different values of ηi can be observed. Finally,
for training, they used an SVM to train the features GIST, HOG, SSIM, AlexNet-
ImageNet, AlexNet-Places205, AlexNet-SUN, rCNN-ImageNet, rCNN-Places205, and
rCNN-SUN. Then, they added a regularized RankingSVM (Joachims, 2002) with l2
regularization (Tikhonov, 1943). Notable results include: (i) the implementation of
a generic pooling function, allowing for obtaining different regions of an image; (ii)
the rCNN model that performed best with the configurations: AlexNet-Places205 +
rCNN2[m = 24, η=(0, 0.01, 0.05, 0.1)], which means features from the second layer,
24 linear filters, and the specified η values.

In 2016, Dubey et al. (2016) extended the Place Pulse 1.0 dataset from 4 cities,
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(b)

(a)

Figure 2.15: (a) Map of security scores predicted by the RSS-CNN network (VGGNet)
and processed with TrueSkill, showing the level of security in a particular city; (b)
architecture of the proposed networks (model AlexNet). Source: (Dubey et al., 2016).

73,806 comparisons, and 4,136 images evaluated in 4 categories to Place Pulse 2.0
with 56 cities, 1,223,649 comparisons, and 111,390 images evaluated in 6 categories;
where the extended categories are safe, lively, boring, wealthy, depressing, and beautiful.
Additionally, based on the results presented in StreetScore (Naik et al., 2014), the
authors indicated that the analysis conducted in New York and Boston was not entirely
correct, due to the low number of comparisons available at that time (an average of
6), which did not meet the minimum required for the TrueSkill algorithm to converge.
Therefore, two models were proposed: (i) StreetScore-CNN (SS-CNN) and (ii) Ranking
SS-CNN (RSS-CNN). The architecture of SS-CNN consists of fusing the pre-trained
networks AlexNet, PlacesNet (Zhou et al., 2014), and VGGNet (Simonyan y Zisserman,
2014); generating the new SiamesesNet (Koch et al., 2015). The RSS-CNN is used as
a RankSVM (Joachims, 2002) as an output function to determine the winner between
the comparison of two images. In Figure 2.15 (a), the result of the HPM obtained
from the predictions of the SS-CNN and RSS-CNN networks is observed. Key results
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(b)

(c)(a) (d)

Figure 2.16: (a) The 8 viewpoints taken from a position where a crime occurred. (b)
Application of clustering over the city of Seattle with crime events (latitude and lon-
gitude) grouped into 5000 clusters represented by a point with latitude and longitude.
(c) Comparison of real data and predictions for the city of Chicago, highlighting the
places where prediction errors occurred. (d) Examples of regions associated with a
level of criminality and with the highest perception score represented by red rectangles
in the images. Source: (Liu et al., 2017).

include: (a) the creation and release of the Place Pulse 2.0 dataset. (b) It is not
possible to use the TrueSkill algorithm because a minimum of around 24 or 36 votes
per image is needed, which translates to between 1.2 and 1.9 million comparisons in
total. (c) The SS-CNN and RSS-CNN networks for predicting a winner between two
images.

Additionally, Liu et al. (2017) propose a method for identifying regions within a
given image that have a relationship with urban perception in cities and urban environ-
ments (e.g., residences, streets). The experiments were carried out using images from
5000 different locations in the cities of Chicago, San Francisco, Seattle and New York;
where in each location 8 different FOV were chosen (see Figure 2.16 (a)). Additionally,
each location was selected based on crime data collected by government agencies over
a 15-year period (e.g. robberies, fights, assaults, among others), as well as perception
scores found by StreetScore and Place Pulse 1.0 ; obtaining a total of 1,434,558 crime
events from the 4 cities, generating an associated perception score. For data processing,
the Parzen Window (Parzen, 1962) method was used to estimate the density of each
place and quantify the density in 5 levels, places with low density are interpreted as
safe. To avoid redundancies in the data, K-means was applied to the locations (latitude
and longitude) to create 5000 groups (see Figure 2.16 (b)).

For data processing, bag of street view images is defined at each location (contain-
ing the 8 FOV); Likewise, each image at a different angle is composed of a set of regions
(bag of image regions), likewise, an image region is in turn recursively decomposed into
a set of sub-regions (bag of sub-regions). This data set was renamed Place-Centric,
which is made up of the 5000 images for each of the 4 cities where each image has
8 regions and 40 sub-regions. To train this data, a variation Multi-Instance regressor
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(a)

(b) (c)

Figure 2.17: (a) Characteristics and attributes that describe an image as scenic, show-
ing the characteristics considered positive or negative. (b) Website Scenic-or-Not. (c)
General map over the scenes and their respective attributes. Source: (a) (Seresinhe
et al., 2017), (b) (UK-gov, 2017; Seresinhe et al., 2017), (c) (Seresinhe et al., 2017)

(MiR) (Ray y Page, 2001) called HDMiR is used; where the inputs are the features
extracted by the VGGNet network. Figure 2.16 (c) shows the results of the prediction
through a HPM of crime levels. As notable results: (i) creation of the Place-Centric
data set composed of images and criminal records; (ii) a method called HDMiR for the
prediction of a perception score based on location density by crime rate.

Another work focused on visual appearance is “What makes an outdoor space
beautiful?” (Seresinhe et al., 2017), which presents a study on protected spaces in
the United Kingdom (e.g. natural areas, landscapes, fields, among others); called
scenic. This study was carried out through the game Scenic-Or-Not (UK-gov, 2017),
which contains more than 217,000 images where one represents 1 km2 of Great Britain
and comes from the website Geograph (UK-gov, 2015). To evaluate and identify the
attributes contained in each image, the AlexNet-Places205 network was used with
weights previously trained on the Scene UNderstanding (SUN) (Xiao et al., 2010) data
set to obtain which of the 102 attributes (e.g. trees, flowers, vegetation, shops, among
others) were present in each image. Likewise, they contrasted the characteristics of
each image using ResNet-152 previously trained on Places365 (Zhou et al., 2017),
which predicts between 365 categories of type of scenery (e.g. mountains, lake natural,
residential, train station, among others). They called the composition of the colors
black, blue, brown, lead, green, orange, pink, purple, red, white and yellow present in
the images as ElasticNet. Which was used to concatenate it with the extractions of
Places205+SUN and Places365, being trained with an SVR to predict the scene level
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(a)

(b) (c)

Figure 2.18: (a) Training model on Place Pulse 2.0 data and generating perception
scores about Beijing. (b) Training model on Beijing images, their perceptual scores and
visual components (segments) extracted from the streets. (c) Results of the type of
perception present in the different types of environment present in the city of Beijing-
China. Source: (Zhang et al., 2018).

scores. As relevant results we have: the identification of the most important categories
and attributes of each image (see Figure 2.17 (a)); showing that natural features such
as coastlines, mountains, natural rivers and man-made structures (e.g. towers, castles
and viaducts) lead to places considered more scenic. In contrast, scenes with trees,
places with green areas such as grass or fields are considered less scenic (see Figure
2.17 (c)).

In 2018, Zhang et al. (2018) used data from Place Pulse 2.0 and the object
segmenter PSPNet (Zhao et al., 2017) to perform an analysis on which features or
objects have the greatest influence on the prediction of the perception of security in
images of the cities of Shanghai and Beijing obtained through Tencent Street View
Service (Tencent-Street-View-service, 2016). It should be noted that some of the images
of Beijing were obtained from Place Pulse 2.0. To obtain an image map, images were
chosen at an interval of 50 meters away from each other, with a size of 400×600 pixels
and camera angles 0, 90, 180 and 270. With this process, around of 245,388 images of
Shanghai and 135,175 images of Beijing. The scores of Beijing-Place Pulse 2.0 in the
6 categories were extracted. To generate the HPM of Beijing (see Figure 2.18 (a)), a
SVR was used with the features extracted from ResNet. Then, the PSPNet network
was used to obtain the objects present in the images to train it using a Multi Linear
Regressor (MLR) (Tranmer) (see Figure 2.18 (b)). This allowed us to understand the
perception of each type of environment, such as roads, streets, parks, residential areas.
Figure 2.18 (c) shows the 6 mentioned categories and the level of perception according
to each type of environment (residential, roads, etc.). As notable results we obtain: (i)
the analysis of the presence of predominant objects in various parts of the city; (ii) the
generation of a HPM and a relationship between the presence of objects and types of
places.
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(a) (b)

Figure 2.19: (a) Relative level of graffiti in the city of Sao Paulo. (b) Results of graffiti
detection in the city of Sao Paulo, the probability of detection is also shown. Source:
(Tokuda et al., 2019)

On the other hand, many psychological studies mentioned above concluded that
graffiti has a high influence on the presence of crimes in a certain area, as well as
influencing the perception of low security on the streets. Due to this, studies have been
carried out related to the presence of graffiti and its influence in the city such as Sao
Paulo - Brazil (Tokuda et al., 2019), Belo Horizonte - Brazil Diniz y Stafford (2021)
and Medelĺın - Colombia (Alzate et al., 2021) . (I) The first work studied in Sao Paulo
used the Mask R-CNN detector (He et al., 2017) with ResNet-101 feature extractor (He
et al., 2015) and weights previously trained on MS-COCO (Lin et al., 2014); training
was performed on about 10,000 images obtained through GSV. Once trained, the level
of presence of graffiti in the city was evaluated (see Figure 2.19 (b)) obtaining an average
presence using the GVI method, comparing it spatially with the Human Development
Index (HDI) (Human Development Index, which measures the rate of growth, birth
rate and educational improvement) (see Figure 2.19 (a)); showing as a result that the
greater the presence of graffiti in certain places coincide with the places with low HDI.
(II) The second work studied in Belo Horizonte, makes a geographical comparison of
the presence of graffiti and the crime rate such as: attacks on people, home invasions,
sexual violence, drug and weapons trafficking; All these data were obtained from the
local police in the years 2011, 2015 and 2017. This study was carried out in the central
city of Belo Horizonte, using the zero-inflated negative binomial regressor (Garay et al.,
2011) method to find a correlation between the presence of graffiti and serious crimes,
showing that in Belo Horizonte there is little or no relationship between the two. (III)
The third work studied in Medelĺın explores the types of graffiti present, such as artistic
and vandalism. They used the Faster R-CNN model (Ren et al., 2017) and the STORM
dataset (Charalampos et al., 2019). The results (i) showed that graffiti has a greater
presence in commercial places corresponding to the city center, industrial areas and
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little presence in residential areas; (ii) they also presented an extended version of the
STORM dataset, adding only 373 images.

In this section, different works aimed at predicting street perception (e.g. safety)
were presented using different feature extraction methods based on deep convolutional
networks, and then training the extracted features using various models such as SVM
or derivatives such as RankSVM and DCNN. In addition, they showed studies on the
impact of the visual appearance of the streets, such as the presence of trees, buildings,
green areas or graffiti. These studies were carried out with real crime history data or
other data such as house prices, robbery rates, among others; with which they carried
out the evaluation of the predictions of their models.

2.4 Interpretation and visualization of extracted features

This section presents the work on the explanation and visualization of the characteris-
tics of a certain correlation between an image and urban perception, taking as a study
basis the influence of visual elements present in the analyzed street images. Visualiza-
tion methods for understanding deep networks are through methods that highlight the
features learned in the network, such as Guided Back-Propagation (GBP) (Springen-
berg et al., 2014), Class Activation Map (CAM) (Zhou et al., 2016a) and Grad-CAM
(Selvaraju et al., 2017).

In 2019, continuing the idea presented at Doersch et al. (2012), where Place
Pulse 2.0 and the predictions of possible winners were studied through a SiameseNet,
Min et al. (2019) addressed the idea to find the most relevant visual characteristics of
the prediction of a comparison at the time of making it. That is, if we compare two
images in the safe category, what characteristic indicates “this image is more secure?”.
To do this, they proposed the method called MTDRALN which learns all perceptual
attributes simultaneously. This method is composed of twomulti-task siamese networks
(von Platen et al., 2020) with two types of subnetworks, one for classification with
weights previously trained on the Places205 network and another for ranking using a
RankSVM. In these networks, each SiameseNet will learn a relative attribute of each
pair of images to be compared; Through a sparse matrix of attributes, it allows easy
and fast exchange between characteristics of a set of attributes A = {am}Mm=1 for each
attribute “m” (p. e.g. insurance) related and unrelated.

The objective of the method is to obtain the aforementioned sparse matrix defined
as the attribute values represented by W = [w1, w2, ..., wM ] ∈ RD×M which It is divided
into groups of relative attributes, for example with Place Pulse 2.0 it is called a positive
group: safe, lively, beautiful, wealthy and a negative group: depressing, boring. To train
the model, they reduced the data set by filtering the 161,882 ties within the total of
1,208,808 comparisons. Likewise, they only analyzed the cities of New York, Berlin,
Tokyo and Moscow. Finally, to determine which objects are the most influential in
each category, they use the PSPNet network to obtain object segmentation with the
objective of calculating an intersection between the perception scores obtained by the
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(a)

(b)

Figure 2.20: (a) Architecture of the MultiTask Deep Relative Attribute Learning Net-
work (MTDRALN). (b) Results of applying Grad-CAM to the images of each category,
showing that the relative attributes encompass almost the entire image, showing that
the images classified in the same category have a similar visual appearance. Source:
(Min et al., 2019).

RankSVM and the areas generated by the Grad-CAM interpretation method as can
be seen in Figure 2.20 (b). As a notable result we highlight: (i) implementation of
a double SiamesNet together with the interpretation using Grad-CAM to understand
what characteristics of the two input images determine the predominant category in
both.

In that same year, Xu et al. (2019) proposed another method also based on the
analysis of image comparisons and their characteristic attributes. The objective is to
identify which factors within an image directly influence the perception of streets, high-
lighting the importance of the semantic information provided by the objects through
the feature maps of each attribute (e.g. safe); These feature maps are obtained by the
Grad-CAM technique. Therefore, 2 models are proposed for image comparison, the
first predicts the winner by generating a perception score from that comparison; and
the second predicts a perceptual score for both images. These models are made up of
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(b)

(a)

(i)

(ii)
i

Figure 2.21: (a)-(i) Architecture of Perception Rank Network (PRN) and (a)-(ii)
Semantic-Aware Perception Network (SAPN). (b) Results of applying Grad-CAM to
some images from the Place Pulse 2.0 data set, choosing one for each of the categories:
safe, wealth, depression, boring, lively, beautiful . Source: (Xu et al., 2019).

2 sub-networks called Perception Stream and Semantic Stream.

Both sub-networks are a fine-tunned of ResNet-50 previously trained on ImageNet
modifying them from blocks 4 and 5 of the network, changing each max pooling by
a Global Average Pooling (GAP) whose architectures of both networks are shown in
Figure 2.21 (a). The first sub-network called PRN evaluates the characteristics between
2 images compared to each other, obtaining as output the regression value of both
images. The second sub-network called SAPN evaluates the score of an image; and also
has two sub-components that use the ResNet-50 model. The first Semantic Stream (S-
Stream) component uses the output of size 1000 from ImageNet ; This network outputs
the score between the two. Instead, the second component uses the GAP extracted
from the last convolution (1 × 1 × 2048) called Perception Stream (P-Stream). As
notable results we have: the SAPN has a better result than the PRN in predicting
perception scores. Furthermore, it shows that the models trained on safety, lively,
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beautiful, wealthy have better results evaluated among themselves than when evaluating
one of these with the categories boring, depressing and vice versa.

In this section we saw works related to the interpretation of models such as
Siamese Network and PRN and the prediction of perception, both models looked for
different characteristics between each pair of images obtained from the data to later
use a method of interpretation (generally the Grad-CAM observed in both methods.
Figure 2.20 (b) and Figure 2.21 (b)) shows the results of both works, highlighting
the characteristics that the models consider relevant within each image evaluated in a
certain perception category.

2.5 Final considerations

In this chapter we have made an exhaustive presentation of the works related to our
work, which has two main themes: Analysis and prediction of the perception of security
and the use of the data set called Place Pulse 2.0. For the most part, we found that
a large part of the works studied have as their main focus how to find a method
to predict the perception of urban safety using the Place Pulse data set or others.
The main purpose is to find what aspects of the visual appearance of the streets can
influence this perception. Over the years, each work has proposed an increasingly
complex model to extract features and highlight them, or on the other hand, they
seek to complement information using other data sets and try to describe a more
general picture. In our work, our main objective is to analyze, explore and understand
the composition of data in Place Pulse 2.0 ; so that once you understand how the
data behaves. This approach differs from those mentioned above, since none of them
performed an exploratory analysis of the data before proposing some type of solution.
This step will allow us to understand what type of model or technique would be most
appropriate for the data studied.

A review has been carried out on the works related to: (a) analysis of urban
perception and (b) extraction of features and visual components from images and (c)
interpretation and visualization of extracted features. We have also described some
studies carried out on urban perception and how an attempt is made to quantify the
level of perception by explaining through the relationships found in the characteristics
learned by models trained on street image data with perception scores. However, it is
worth mentioning that in none of the works described and related to the Place Pulse 2.0
data set an analysis of the data was carried out. In the next chapter we will describe
in detail the analysis carried out on the Place Pulse 2.0 data set.
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Exploratory Analysis of the Data Set
Place Pulse 2.0

Number of comparisons

N
u
m

b
e
r 

o
f 

im
a
g
e
s

Average comparisons by sample: 9.088

Figure 3.1: We show the number of comparisons in the category safety (safe), in which
it is observed that the number of comparisons does not exceed on average 10 per image,
in addition , most images were compared only 2 times. Source: The author.

As we wrote in Chapter 1, the motivation of this work is to study the perception
of urban security through the study and analysis of the Place Pulse data set; with
which an exploratory study and analysis is proposed to understand the behavior of
the data. In general terms, it is known that Place Pulse 2.0 is a set of comparisons
between two images of the same or different cities, evaluated in 6 different categories:
safe, depressive, boring, opulent, beautiful and good to live respectively (a From now
on, we will refer to them as safety, depressing, boring, wealthy, beauty and lively) and
not necessarily the same number of times. We also know that the average number of
comparisons does not exceed 10 comparisons per image (see Figure 3.1), which is why
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some algorithms like TrueSkill do not work very well (Dubey et al., 2016; Naik et al.,
2014) .

It is important to mention that in this work, we will be focusing exclusively on
the safety perception category, because this category has the largest number of image
comparisons. The analysis carried out was divided into small sections that we will
describe below: (i) description of the data; (ii) calculation of perception scores; (iii)
analysis of the possible “levels of geographic generalization” of the data; and (iv) data
disparity analysis.

3.1 Data Description

The data set that we will use in our work is obtained from the website Place Pulse
(MIT-Media-Lab, 2013) having 2 versions, the first is Place Pulse 1.0 from 2013 and
the second version is Place Pulse 2.0 from 2016, on which this work is focused. In
both versions of Place Pulse it is made up of 8 fields: for each comparison there is
the positions of the images (latitude and longitude), the image identifiers (right and
left), the result of the comparison and the respective category evaluated. Figure 3.2
shows the raw data, that is, how the unprocessed data is. It is observed that they are
comparisons between two images emphasizing the winner.

Figure 3.2: We show the composition of the data set Place Pulse, the comparison
between the two images and the winner in each category is observed. Source: The
author.

Place Pulse 1.0: At the end of 2013, Place Pulse 1.0 contains 73,806 compar-
isons, 4,136 images and 4 cities from two countries (US and Austria): New York City,
Boston, Linz and Salzburg and three types of comparisons: safe, wealth, and unique.

Place Pulse 2.0: In 2016, Place Pulse 2.0, which already contained around
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Figure 3.3: (a) Relationship between cities and the number of images within the Place
Pulse 2.0 dataset; (b) Relationship between cities and number of images within the
Place Pulse 1.0 data set. Source: The author.

1.22 million comparisons of 111,390 images of 56 cities from 32 countries across the 5
continents, such as seen in Figure 3.4, from which we can notice that there are more
images of cities in Europe and North America than in other places; Likewise, there are
six types of categories already mentioned above.
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Figure 3.4: Map of the 56 cities with street images contained in the Place Pulse 2.0
data set, it is observed that Europe and North America have the greatest number of
cities evaluated in the website Place Pulse (MIT-Media-Lab, 2013) than elsewhere.
It is worth mentioning that points with the same color belong to the same country.
Source: The author.

3.2 Calculation of Perception Scores

In this section we will describe the equations used to calculate the weighted scores in
each category, it is worth mentioning that these are strongly related to the number of
times an image won or lost; based on their per-image comparisons. As an example,
in Figure 3.1 we show the number of comparisons in the safe category. Next, we will
describe and present the equations we used to calculate these perception scores.

By having an image i compared to other images many times in different categories,
the percentage of times that i was chosen indicates the intensity of the perception
of the image, since of all the images evaluated, it will be obtained that both % was
considered to have greater perception (e.g. security) compared to the rest of the images.
Furthermore, let i

′
be an image compared to i, the intensity of i

′
also affects the intensity

of the image i, therefore, the positive rate isdefinedWi =
wi

wi+di+li
and the negative

rate Li =
li

wi+di+li
of an image i of a certain category. Where wi indicates how many

times he won, li how many times he lost and di tied; Then from this, the Q-score called
qi,k is calculated for each image i of a certain category k:

qi,k =
10

3
(Wi +

1

wi

(

wi∑
k1=1

Vw(k1))−
1

li
(

li∑
k2=1

Vl(k2)) + 1) (3.1)

Equation 3.1 is interpreted as the positive rate of image i as a weighted approx-
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imation over all images k1 it won and a penalty over all images k2 it lost ; where Vw

is the vector of positive rates of the images with which he won and Vl is the vector of
negative rates of the images with which he lost, to finally obtain a score between 0 and
10 obtaining a scale used in studies previous (Nasar et al., 1993; Nasar, 1998).

Once this step is completed, we can extract information from the described data
set. Tables 3.1 and 3.2 show the respective statistics for each version. For example,
in Place Pulse 1.0 the number of images per city and the average perception score for
each evaluated category are obtained. It is observed that Place Pulse 2.0 has more
information, especially at the continent, country and city level. As well as the number
of images associated with each category and their respective average. Figure 3.3 shows
the relationship between the number of images per city, in which the increase in the
number of cities and amount of images per city is observed. It is also observed that
the number of images per city is very uneven, especially in Place Pulse 2.0.

Place Pulse 1.0: In Table 3.1 you can see the number of images per city
and the average scores for each category obtained from an information cleaning. It is
observed that the safety category has the highest average score, as well as the largest
number of images evaluated. Which is verified by observing that the images and their
positions exist and correspond to a certain street.

Place Pulse 2.0: In Table 3.2 you can see the number of images per city,
country and continent is larger than the previous version. Furthermore, the average
scores for each category are higher. We also highlight that the safety category has
the highest number of comparisons and the average score. Furthermore, we see that
the country USA has the largest number of images and cities evaluated in total. That
is why we divide the continent of America into South and North; In addition to the
images being very different in visual appearance,

Place Pulse 1.0
Cities # images average safe average wealth average unique

New York 1705 4.47 4.31 4.46
Boston 1237 4.93 4.97 4.76
Linz 650 4.85 5.01 4.83

Salzburg 544 4.75 4.89 5.04
Total 4136

Table 3.1: Statistical data about cities and average scores for each perception category
within the Place Pulse 1.0 dataset obtained from the JSON file downloaded from the
website MIT-Media-Lab (2013).
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Place Pulse 2.0
Continent #countries # cities # images
Europa 19 22 38 747
América del Norte 3 17 37 504
América del Sur 2 5 12 524
Asia 5 7 11 417
Oceańıa 1 2 6097

África 2 3 5101
Total 32 56 111 390

(a)

Place Pulse 2.0
Category # comparisons average scores
Safety 368 926 5.18
Lively 267 292 5.08
Beautiful 175 361 4.92
Wealthy 152 241 4.89
Depressing 132 467 4.82
Boring 127 362 4.81
Total 1 223 649

(b)

Table 3.2: Perception Score Statistics: (a) Continents and Images; note that we divided
North America and South America, (b) Number of comparisons; Note that safety was
the most compared category and with the average highest score.

3.3 Analysis of Levels of Geographic Generalization

Up to this point, we have already calculated the respective perception scores for each
city, however, once we know which city an image belongs to, we could extend this
information to know which country it belongs to and which continent. As we mentioned
in the previous chapter, we define “geographic generalization levels” as those regions
that we can use to segment the data by city, country, continent or at a global level.
Following this idea, the perception scores were calculated at each of these levels; That
is, through latitude and longitude data, we filter comparisons between two images
whose locations are at the same “geographic generalization level”. To calculate the
scores, it was preferred to divide the continent of America into two: North America
and South America. Once the comparison scores were calculated by filtering images
compared in the same city, same country, same continent and at a global level (not to
say “same world”), we proceeded to observe the distributions of the scores found.

In Table 3.3 you can see the impact on the scores after being calculated through
these levels, likewise, we noticed a reduction in the number of images for each category
evaluated being that the security category is the one that maintains the largest number
of images in all cases and the highest average perception score (see Table 3.2 (b)). It is
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Figure 3.5: Distribution of perception scores at different “geographic generalization
levels” in 3 different cities: (a) Amsterdam-Netherlands, single city analyzed; (b) Rio
de Janeiro-Brazil with 3 cities; (c) Atlanta-USA, which has 17 cities; (d) all cities
(global). Source: The author.

observed that the number of comparisons of an image with another from the same city,
country or continent is much lower than with others globally. This only corroborates
the idea that the images evaluated in pairs were randomly selected and not filtered by
the same location. Likewise, a drastic reduction is observed in the images evaluated
in the same city and globally (close to 82 % of the total). It is important to mention
that in general, all countries have a maximum of 3 cities, some have only one and the
only case with more than 3 cities is the USA. Knowing this, we proceeded to observe
the distribution of the scores obtained from each level, we noticed that in those where
we only have one city (most countries in Europe) or 2 or three cities (such as Brazil,
Chile, Mexico and Japan) the calculation of scores at the city and country levels had
no impact. On the other hand, the case of a city in the USA (e.g. Atlanta) did show
a considerable change between city and country, this is because having 17 cities, it has
a greater number of comparisons at the country level. At the continent level, we have
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Place Pulse 2.0
Geographic level safety lively Beautiful Wealthy Depressing Boring

City 20 143 14 803 9410 7642 6556 6148
Country 45 640 38 216 28 811 24 326 21 171 20 931
Continent 85 890 79 788 66 792 57 780 52 504 52 031
Global 111 390 111 349 110 767 107 796 105 496 106 364

Table 3.3: Number of images obtained per category after performing the calculation
at each “geographic generalization level”. We see that the safety category presents
perception scores for all Place Pulse 2.0 images at a Global level (See Table 3.2).

that Africa and South America present a terrible distribution, this is due not only to
the small number of cities (3 in Africa and 5 in South America), but also to the number
of comparisons obtained. At a global level, a more equitable distribution is observed
with respect to the calculated scores.

As seen in Figure 3.5, we compare the distribution of each case found: countries
with one/two cities (Netherlands-Amsterdam), countries with 3 cities (Brazil-Rio de
Janeiro) and the USA with 15 cities (only country with more than 3 cities). Due to this,
making a specification between the different proposed levels is not possible because the
number of comparisons decreases, directly affecting the scores and number of images.
Furthermore, it is observed that even after calculating at a global level, a large number
of images are observed that have a score of 3.33; This is because most images were
compared at most 2 times (see Figure 3.1) of which, it did not win even once. For
example, at the city level we noticed that the number of comparisons between 2 images
of Rio de Janeiro, of the total of 3684 images, we only obtained 968 with scores 3.33
and 6.66 corresponding to the vast majority of images. From this, we ruled out the
possible approach of analyzing cities locally, whose images were compared in greater
quantity with other images of different cities.
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Figure 3.6: Using a threshold of 5.0 to designate safe or unsafe, the disparity in the
number of images between safe and unsafe perception by each city. It is observed
that in most cities, the unsafe perception is much higher (e.g. Rio de Janeiro and Sao
Paulo). Source: The author.

3.4 Data Disparity Analysis

As shown in the previous section, when observing the distributions at the city, country
and continent levels of each city, we perceived that having a greater number of images
with a score of 3.33 generated a disparity in the data for the city, country and conti-
nent. However, at a global level we observed a mitigation in the number of disparate
images but still maintaining a high number of images compared with scores of 3.33;
Furthermore, it is observed that at a global level, the distribution of scores has a better
variety than at other levels. This is because in general the global average is 5.188
(see Table 3.2 (b)). Therefore, it was decided to use the value 5.0 as a threshold for
the division of the secure and non-secure classes. This is also because at the global
“geographic generalization level”, the largest number of images is found with a value of
5.0. ± 0.1 (see Figure 3.5).

In Figure 3.6, we show the disparity of the scores using the number 5.0 as a
threshold to assign the labels to each image (safe and not safe). It can be seen that
the vast majority of cities present a high disparity, especially in cities like Rio de
Janeiro, Belo Horizont and Sao Paulo, which curiously belong to the same country.
While in cities such as Washington DC, Toronto, Sydney, Singapore, London, Boston
and Chicago they present (to a lesser extent) a disparity favoring the perception of
safety. Additionally, we have cities like Atlanta, Amsterdam, Denver, Dublin, Montreal,
Melbourne and Minneapolis with a very close ratio between safe and unsafe. As a final
comment, due to the previously obtained results of “geographic generalization levels”
and the disparity found, we decided to continue our analysis and experiments focused
on perception scores calculated at a global level, not by city, not by country. , nor by
continent.
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3.5 Final Considerations

In this Chapter, the exploratory analysis carried out on the Place Pulse 2.0 data set
was presented, the respective perception scores in the security category were calculated.
These values were calculated across different “geographic generalization levels” such
as city, country, continent and global. When analyzing the resulting distribution of
scores, it is observed that the best possible score is obtained when we use all the
data. Likewise, taking the value of 5.0 as a threshold, a disparity of approximately
11 thousand images is obtained in the “not safe” category. This analysis allowed us to
understand the limitations of the data set, such as: (i) the data set is biased by the
individual perception of each volunteer who participated in the creation of this data
set; (ii) it is necessary to analyze all the data together, it is not possible to carry out
regional analysis; (iii) the data present a great disparity from the chosen threshold
(following the distributions of the calculated scores). In the next Chapter we present
the models and metrics that we will use in the experiments.
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Chapter 4

Prediction of Urban Safety Perception

This chapter presents the models, techniques and metrics that we will use to classify
security perception. To do this, we define a guideline of experiments to be carried out,
we will divide them into 3 groups according to the type of technique used and type of
learning. At a general level, we will use two types of learning: (a) Supervised Learning
and (b) Semi-Supervised Learning. In the Supervised Learning group, we will use two
techniques called transfer-learning and fine-tuning. In the semi-supervised learning
group we will use a GAN model, which is composed of two sub-models called discrim-
inator and generator. As we mentioned before, the main task will be the classification
of images between secure and non-secure classes. Said training will be carried out in
all 56 cities and at a global level, in addition, the metrics that we will use for these
experiments are Accuracy, F1 score and Area Under Curve (AUC) calculated from the
values obtained from the textitPrecision-Recall. However, to compare the performance
of the models, we mainly rely on the values reported by AUC and F1 score. These
metrics are calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN

(4.1)

Precision =
TP

TP + FP

(4.2)

Recall =
TP

TP + FN

(4.3)

F1score = 2
Precision ∗Recall

Precision+Recall
(4.4)

Where TP means True Positive, TN means True Negative, FP means False Positive
and FN means True Negative.
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Figure 4.1: The modification of the VGG16 model, called “VGG-GAP” from now on,
is presented. For both cases, baseline and fine-tuning we will use this architecture, in
the first case as a feature extractor; for the second, it will be a replacement of the max
pooling and flatten layers of the original model. Source: The author.

4.1 Group Models Transfer-Learning (Baseline)

We will define our group of baseline models as the set of models based on transfer learn-
ing. For the experiments, we mainly use the VGG16, ResNet and Exception networks
with weights previously trained on ImageNet (Russakovsky et al., 2015) and Places365
(Zhou et al., 2016b)), which we will use as feature extractors. We decided to choose the
weights previously trained on two different databases, these are: (i) ImageNet presents
excellent performance in training and predicting images such as animals or objects; (ii)
Places365 presents a relationship to the prediction of places/scenes, such as residential
places, streets, parks, etc. Which is directly related to our studied data set (street
images). We decided to give a deeper study to the VGG16 network over others, this is
because the VGG16 network presented better performance, performance and accuracy
in data sets such as Places365, SUN and Scene15 explained and shown in detail in
the study of Ali y Zafar (2018); which are data sets composed of images of streets or
environments (results reported in Zhou et al. (2017, 2016c)).

Likewise, we make a small change in our VGGNet baseline model in which we
will remove the last two dense layers and add a GAP, supporting that the use of
this technique, with respect to a max pool performs better when extracting features
(Lin et al., 2013). In Figure 4.1 it can be seen that from the last convolution block,
the GAP calculation is carried out, which we use as characteristics; We will call this
model “VGG GAP” to differentiate it from the original “VGG”. To make it easier
to recognize our models from the group baseline we will call them: “TL VGG16”,
“TL VGG16 GAP”, “TL VGG16 Places” and “TL VGG16 GAP Places”; where those
that have “ Places” are those that use the weights pre-trained on Places365. Therefore,
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the architectures would be the following: (i) “TL VGG16” and “TL VGG16 Places”
are the original architecture of VGG16, so the extracted features would be a vector of
size 4096 of the last dense layer; (ii)“TL VGG16 GAP”and“TL VGG16 GAP Places”
by having the GAP method a vector of size 512 will be extracted, which is a general
weighting of each textitfeature map obtained in the last convolution. Finally, once the
characteristics have been extracted with these 4 models, we will proceed to perform
our safety perception classification training using the linear and non-linear models:
(i) Logistic Regression: L(y, f(x)) =

∑n
i=1 log(e

(−yif(xi)) + 1); (ii) Ridge Classifier :
L(y, f(x)) = sgn(||y−f(x)||22+ ||w||22); (iii) Linear SVC : L(y, f(x)) =

∑n
i=1max(0, 1−

yif(xi)) and (iv) RBF SVC.

4.2 Group Models Fine-Tuning

As we describe in sub-Section 4.1, we employ the VGG16 network due to the good
performance reported on the Places365 dataset. We will use the same architectures
described in the previous section baseline (see Figure 4.1), with the difference that
this group of models which we will call “FT VGG”, ‘ ‘FT VGG GAP”, “FT VGG-
Places”and“FT VGG GAP-Places”will be trained by freezing some convolution layers
(limited by our memory and computational power). Similarly, we will assign prefix
“Places” or nothing respectively to the pretrained weights of Places365 and ImageNet.
For the experiments, we freeze all the layers of each architecture until convolution block
4, so only the last block and the dense ones will be trained (in the case of “FT VGG16”
and “FT VGG16 Places ”). Finally, in all cases we add a last dense layer with only
two outputs (corresponding to the safe and non-safe classes) with activation function
Softmax : f(xi) =

exi∑
j e

xj and loss function Categorical Cross-Entropy.

4.3 Model GAN Semi-Supervised

As we mentioned earlier in Chapter 3 about the possible limitations of Place Pulse 2.0,
we proposed a method based on semi-supervised learning; which could mitigate and
perform well against the characteristics of Place Pulse 2.0 such as: few images, data
with disparity and little data generalization. However, why use a Semi-Supervised
model? This set of techniques that use labeled and unlabeled data, present better
performance and a considerable improvement during learning in cases where there
is data disparity. Because we have little data, the use of a Semi-Supervised GAN
(Salimans et al., 2016) is proposed.

We chose to use this method due to the aforementioned limitations (few data and
unbalanced data) which a GAN can easily address. The first limitation: unbalanced
data set, results have been seen from the application of GANs on unbalanced data
(Sampath et al., 2021; Zhou et al., 2018), demonstrating that this type of architectures
allow learning characteristics of images and classify which class a given image belongs
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Figure 4.2: The implemented “SSL-GAN” model is presented in general terms, com-
posed of two main components: (a) Generator model, this model is responsible for gen-
erating images based on the learned characteristics; (b) Discriminator model, which is
responsible for two sub-tasks, the first is the classification of an image between safe or
not safe (supervised learning) and the second is the classification of an image between
real or fake (unsupervised learning). Source: The author.

to. The second limitation: data set with few samples, the use of a GAN with limited
data like Place Pulse 2.0, having only about 110 thousand images without any Data
Augmentation is ideal (Karras et al., 2020; Cenggoro et al., 2018). Likewise, a semi-
supervised GAN allows us not only to generate data, but also allows us to classify the
data. Unlike a GAN vanilla which is focused on generating and differentiating between
a generated data distribution and the input data distribution. A semi-supervised GAN
(from now on we will call it “SSL GAN”) in addition to performing said generation and
discrimination task, it also performs the data classification task.
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Discriminator
Layer Input Channels Kernel size Stride Activation
Conv 32× 32× 3 32 3× 3 1 LeakyReLU
Conv 32× 32× 32 32 3× 3 2 LeakyReLU

DropOut (0.2) 16× 16× 32 - - - -
Conv 16× 16× 32 64 3× 3 1 LeakyReLU
Conv 16× 16× 64 64 3× 3 2 LeakyReLU

DropOut (0.2) 8× 8× 64 - - - -
Conv 8× 8× 64 128 3× 3 1 LeakyReLU
Conv 8× 8× 128 128 3× 3 2 LeakyReLU

DropOut (0.2) 4× 4× 128 - - - -
Conv 4× 4× 128 256 3× 3 1 LeakyReLU
Flatten 4× 4× 256 - - - -
Dense 128 - - - -

DropOut (0.4) 128 - - - -
Dense 3 - - - Softmax
Total 1 107 882

Generator
Layer Input Channels Kernel size Stride Activation

Espacio Latente 100 - - - -
Dense 4096 - - - LeakyReLU

Re-dimensionar 4× 4× 256 - - - -
Deconv 4× 4× 256 256 4× 4 2 LeakyReLU
Deconv 8× 8× 256 128 4× 4 2 LeakyReLU
Deconv 16× 16× 128 64 4× 4 2 LeakyReLU
Conv 32× 32× 64 3 3× 3 1 Tanh
Total 2 119 811

Table 4.1: Configuration of the discriminator and generator models of our semi-
supervised GAN called “SSL GAN” that will be used to train the data set Place Pulse
2.0 . It is also worth highlighting the number of parameters to train for each model,
giving the detail of each layer used in the construction of each model. Likewise, we
mention that the value of the parameter α of the function LeakyReLU is 0.2.
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In summary, a semi-supervised GAN combines an Unsupervised model (classi-
fication between data generated with a real or false label) and another Supervised
(classification of the data discriminated as real among the proposed classes). Figure
4.2 shows the structure of our GAN; in which from a vector of random values between
0 and 1 (also called “noise”) the model can learn to generate artificial images almost as
good as those of the original data set. The configuration of our GAN is shown in Table
4.1, in which we can observe the architectures for the discriminator and generator in
detail and the operations associated with each one.

4.4 Final Considerations

This Chapter has presented the approaches, methods and models to be used in our
training experiments on the previously described Place Pulse 2.0 data set. In this
study we cover 3 types of techniques: (i) transfer -learning ; (ii) fine-tuning ; and (iii)
a semi-supervised GAN. Likewise, we have described the metrics that we will use to
evaluate the performance of the models. These evaluations are intended to verify what
type of technique could be the most appropriate given the limitations of Place Pulse 2.0
presented in Chapter 3. In the next chapter we will see in detail the methods, hyper-
parameters and experiments carried out. , which are part of our proposed methodology.
The behavior of each of the models of the transfer-learning, fine-tuning groups will be
seen in detail with the respective modifications using the GAP and the GAN semi-
supervised.
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Chapter 5

Results

This Chapter presents the evaluations and reports of results corresponding to the mod-
els presented in Chapter 4. To carry out the experiments, an environment composed of
an NVIDIA GeForce GTX 1070 GPU, driver 460.91.03, CUDA version 11.2 and 8.11
Gb was used. of VRAM; 12-core Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz each and
a total of 31.1 Gb of RAM. In all experiments, except for “SSL GAN”, we performed
training per city and training at a global level (using all cities).

delta value
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Global imbalance
Train set, safe category

Train set, not safe category

Test set, safe category

Test set, not safe category

Figure 5.1: Distribution of the disparity in the number of images at a global level
(joining all cities) corresponding to each class. It is evident that the higher the value
of the parameter δ, the greater the disparity of the data. Source: The author.

As studied in previous works previously mentioned, an additional parameter
called δ (delta) was defined. This parameter δ allows us to choose a subset of the

51



5.1. Experiments performed

Summary of hyper-parameters
Method Input Batch Opt LR Ep/It CV Data

TL VGG 4096 - lbfgs - 1000 5 Global/City

TL VGG GAP 512 - lbfgs - 1000 5 Global/City

FT VGG 224× 224× 3 128 Adam 1e−3 100 5 Global/City

FT VGG GAP 224× 224× 3 128 Adam 1e−3 100 5 Global/City

SSL GAN Dis 32× 32× 3 128 Adam 1e−3 100 5 Global

SSL GAN Gen 100 128 Adam 1e−3 100 5 Global

Table 5.1: List of hyper-parameters used in each model during training: (i) Batch:
size of data to be trained; (ii) LR: learning rate; (iii) Opt : Optimizer; (iv) Ep/It
means epochs or iteration (only in TL models are iterations used); and (v) CV cross-
validation. The libraries used for the implementation of the experiments were Sklearn
(Pedregosa et al., 2011) and TensorFlow -Keras v2.3 (Abadi et al., 2015) for the “TL
model groups ” and “FT”/“SSLGAN” respectively.

total set of images from the perception scores in the following way: The range of values
of δ varies from 0.05 to 0.45 which means the percentage of data that We will choose
from each class, when δ = 0.5 is understood to be all the data. For example, for a value
of δ = 0.45 we will choose the images associated with the 45% of the highest perception
scores and the images associated with the 45% of the lowest perception scores.

Figure 5.1 shows the variation of the value δ and its impact on our data set
(training and testing). The main idea of this value δ is to observe the behavior of the
model when selecting a data set with a similar amount of both classes. Likewise, we
observe that as the value of δ increases with a step of 0.05, the class disparity also
increases at the city level and at the global level. This shows us that for low values of
δ it is possible to have data parity, it is observed that from δ=0.2 there is already a
small disparity in the training set. For δ =0.5, we have that the disparity is around 11
thousand images in favor of the unsafe category.

5.1 Experiments performed

First, we need to generally describe how we perform our experiments. For each type
of model we use different techniques to find the best parameters that present the
best results. To carry out the experiments we use the functions GridSearchCV and
KerasClassifier to create our search mesh of the best parameters and hyper-parameters
for our models, likewise, we also use a 5-step cross-validation dividing the data set into
80 % for training and 20 % for testing. For the models of the Transfer-Learning group,
we use the methods LinearSVC, RBF SVC, Logistic Regression and Ridge Classifier,
in all of them we modify the regularization l2 using values of α from 10−4 to 102 and
the parameter “solver” varying from liblinear and lbfgs.
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For the models of the group Fine-Tuning we add other parameters, these are the
batch size varying from size 8 to 128 (in powers of 2), we also vary the model optimizer
between the set SGD, RMSprop, Adagrad, Adadelta, Adam and Adamax with learning
rate varying between 10−6 up to 10−1. The number of epochs was kept constant at
100, because we used the earlyStopping method, which controlled the behavior of the
model. Likewise, in Table 5.1 we summarize all hyper-parameters that generate the
best configuration and best results for each case. Finally, it is important to mention
that for each cross-validation the stratified Kfold method was used to guarantee that
in each validation there is a number of samples with a similar proportion of each secure
and non-secure class.

5.2 Group Models Transfer-Learning (Baseline)

In Figure 5.2 we show the results of the baseline “TL VGG GAP” model in which we
observe that as the value of δ increases from 0.05 to 0.5, The reported accuracy is
decreasing. However, in Figure 5.2 column (b), the accuracy reported for the city of
Rio de Janeiro increases as δ increases; We see this similar behavior in other cities
with a large amount of uneven data (see Figure 3.6). But we cannot say that these
results are correct, because when analyzing the AUC metric, we observe that there is
a considerable drop. This tells us that, based on the idea of data disparity, the model
can correctly classify the images corresponding to the class with the greatest amount
of data. On the other hand, having small values of δ and high values in accuracy and
AUC indicates that the model is learning to classify correctly; This may be because the
lower the value of δ, there is greater proportionality in the number of images of each
class (see Figure 5.1). In addition, we must mention that unlike other cities, Rio de
Janeiro has much more variety in its streets, from green areas (southern zone) to alleys
(northern zone); The opposite is the case in most cities where there is only the presence
of green areas (e.g. Atlanta, Berlin, Amsterdam, among others) or skyscrapers (e.g.
Boston, New York, Vancouver, among others). As we mentioned, monotonous cities at
the image level, such as Atlanta, show a behavior similar to that seen at a global level;
the higher the value of δ there is a tendency to decrease the value of the metrics AUC
and accuracy (see Figure 5.2 (c)).

In Table 5.2 we show the respective averages of the 5 cross-validations reporting
the metrics obtained after evaluating them with the training and test data in each model
at a global level. We should mention that we included models such as ResNet50 and
Xception with weights previously trained in ImageNet to do the comparative analysis
with respect to the architectures we proposed. However, they did not show any notable
results so they were discarded for the fine-tuning models. It is observed that models
based on VGGNet (either pre-trained on ImageNet or Places) perform better than
Xception and slightly better than ResNet. Furthermore, the “TL VGG16 GAP”model
trained using a Linear SVC obtained the best results at the level of accuracy and AUC
(despite a relatively low value). Likewise, it is observed that in all cases the rbf SVC
model had a terrible performance, it was not able to learn or differentiate the images
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(a) (b) (c)

Global: accuracy vs delta

Global: AUC vs delta Rio de Janeiro: AUC vs delta

Rio de Janeiro: accuracy vs delta Atlanta accuracy vs delta
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Figure 5.2: Results from “TL VGG GAP” (best model). We observe 3 specific cases,
in column (a) results are shown at a global level where the decrease in precision is
presented as δ increases; column (b) corresponding to Rio de Janeiro, greater precision
is presented at higher values of δ; and column (c) Atlanta, a behavior similar to the
majority and the global is presented.

between both classes.
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auc accuracy f1 score
Model Method train test train test train test

LinearSVC 63.62 56.50 68.85 65.22 54.78 49.41
VGG Logistic 60.63 57.52 67.25 65.72 51.42 49.07

Ridge Classifier 64.72 54.75 69.44 64.38 56.50 49.34
RBF SVC 45.14 42.42 52.13 52.37 46.93 46.59

LinearSVC 59.01 57.93 66.51 66.09 49.52 49.06
VGG GAP Logistic 58.07 57.57 65.95 65.59 46.06 45.61

Ridge Classifier 59.20 57.93 66.59 65.89 50.27 49.76
RBF SVC 42.93 41.70 50.25 50.35 47.16 46.75

LinearSVC 64.44 57.14 69.48 65.79 56.39 51.20
VGG Logistic 61.74 58.35 68.16 66.44 53.77 51.28
Places Ridge Classifier 65.20 55.76 69.84 64.86 57.56 50.67

RBF SVC 47.32 45.25 56.56 55.69 44.78 44.21

LinearSVC 60.26 59.76 67.38 66.96 51.65 51.04
VGG GAP Logistic 59.40 58.97 66.81 66.62 49.16 48.90

Places Ridge Classifier 60.45 59.15 67.45 66.94 52.23 51.53
RBF SVC 44.40 42.47 52.59 52.54 43.39 45.05

Linear SVC 61.62 59.10 68.10 66.42 53.63 50.80
ResNet50 Logistic 60.04 59.15 67.25 66.37 51.47 49.70

Ridge Classifier 62.11 58.38 68.36 66.08 54.59 51.00
RBF SVC 45.36 44.07 53.46 53.57 44.99 44.98

LinearSVC 55.29 53.25 64.43 63.33 41.66 39.69
Xception Logistic 53.48 52.75 63.56 63.14 36.72 35.87

Ridge Classifier 57.23 52.22 65.22 63.04 45.63 42.11
RBF SVC 45.57 44.99 49.12 49.12 55.01 55.05

Table 5.2: Each train and test column reports the average value of evaluating the
models obtained from the 5 cross-validations in each data set. The ResNet and Xception
models were pre-trained on ImageNet.
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5.3 Group Models Fine-Tuning

As we describe in Chapter 3 and describe in Table 5.1 we train the fine-tuning models
in all cities and globally. Therefore, in Figures 5.4 and 5.3 a color map is observed
on the accuracy obtained by each model trained in each city and at a global level,
evaluated in the same city, the other cities and in all of them (global level). We see
the need to discard Xception due to its terrible performance and reported metrics. It
is also observed that there are cities that maintain a high accuracy (compared to the
average, for example, Rio de Janeiro and Belo Horizonte); Likewise, we can observe
that between both types of “FT VGG”and “FT VGG GAP”models, the cities Taipei,
Singapore, Philadelphia, London, kyev, Dublin and Cape Town maintain a accuracy
low in all evaluations.

Table 5.3 reports the average values of the 5 cross-validations carried out on all
models, from which we exclude Xception due to the low values reported in Table 5.2,
only ResNet50 showed a similarity with the other models described. However, the best
model obtained up to this point is “FT VGG GAP Places” which narrowly surpassed
“FT VGG Places”. We also observed that despite maintaining a accuracy similar to
the “TL”models, the auc and F1 score increased their values, thus demonstrating that
the fine-tuning showed better performance compared to the transfer-Learning models,
which are observed in the reported metrics, in other words, they have a close accuracy
value but these models are more promising, since that manage to predict the disparity
correctly.

auc accuracy f1 score
Model “FT” train test train test train test

VGG 77.83 77.42 74.01 64.71 74.01 64.69
VGG GAP 76.14 75.59 69.40 66.88 69.41 66.87
VGG Places 74.95 74.75 68.71 67.26 68.71 67.27

VGG GAP Places 77.98 77.5 70.52 67.28 70.52 67.28
ResNet50 76.36 72.71 70.36 65.64 67.35 64.98

Table 5.3: Average values of each metric obtained after evaluating each model on
the training and test data. Despite the very close results between all the models, we
observed a drastic increase in the metrics, as well as understanding that the model
manages to distinguish both classes more effectively.
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Figure 5.3: We observe in the color map composed of the accuracy values of each
trained model (row) evaluated in each city (columns) and also at the global “World”.
(a) Results of the “FT VGG” model evaluations in each city. (b) Results of the
“FT VGG Places” model evaluations in each city. Source: The author.
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Figure 5.4: We observe in the color map composed of the accuracy values of each trained
model (row) evaluated in each city (columns) and also at the global level “World”. (a)
Results of the “FT VGG GAP” model evaluations in each city. (b) Results of the
evaluations of the “FT VGG GAP Places” model in each city. Source: The author.
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5.4 Model GAN Semi-Supervised

Due to the time it takes to train this model (approximately between 2∼4 days for
each cross-validation) it was decided to train using all the data, in order to compare
the general results with the other models already shown. As we previously showed in
Tables 4.1 and 5.1, we describe the configuration of our discriminator and generator
models, as well as the hyper-parameters used. Once the GAN is trained, the metrics
reported by the final discriminator model are present in Table 5.4, where it is observed
that in the last epoch the model performs over-training ( overfitting) of the data, which
is why our results are low compared to previous models, however, the AUC metric is
higher than the previously reported results.

auc accuracy f1 score
Model CV train test train test train test

0 80.95 80.97 90.26 59.06 90.26 59.04
1 81.43 81.45 89.42 61.50 89.42 61.48

SSL GAN 2 81.43 81.45 89.56 62.58 89.56 62.57
32x32x3 3 80.59 80.66 90.01 61.52 90.01 61.54

4 80.61 80.63 89.38 61.14 89.38 61.13

Table 5.4: Metrics obtained from the 5 cross-validations evaluated on the training and
test data set, it is observed that the AUC reported is much greater than the previous
ones with a value above 80 %.

Knowing that the results in Table 5.4 are the evaluations in the last epoch, we
proceeded to look for the moment in which the overfitting began, noting that it was
reached in various iterations in each validation. In Figure 5.5 we highlight the iterations
where the best result was achieved for the accuracy and loss histories. On average, the
iteration with the best reported metrics is around iteration 25k. These iterations with
the best metrics are shown in Table 5.5.

auc accuracy f1 score
Model CV iteration train test train test train test

0 23 788 73.89 73.89 78.90 78.12 78.90 78.12
1 58 550 80.21 80.22 92.18 81.25 92.18 81.25

SSL GAN 2 21 951 73.60 73.60 81.25 79.68 81.25 79.68
32x32x3 3 23 180 73.53 73.53 76.56 78.90 76.56 78.90

4 8602 69.84 69.84 74.21 78.90 74.21 78.90

Table 5.5: Metrics reported after evaluating each model with the highest accuracy
reported during training. Some stability is observed in the reported values.
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Accuracy train

Accuracy test

Loss train

Loss test

Figure 5.5: History of accuracy and loss in each cross-validation (CV), we highlight
the iteration or training step with highest value (left column) across a red line. In the
right column, we highlight the same iteration or step for the loss. As reported in Table
5.5. Source: The author.
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(a) (b)

Figure 5.6: (a) Real images of the data set; (b) Images generated in the last training
step. The high quality of the generated images of size 32× 32× 3 is observed, making
it difficult to distinguish them visually. Source: The author.

Finally, in Figure 5.5 you can see the history of the accuracy and loss of the
training, we frame in each figure a red line corresponding to the iteration where the
highest was reached accuracy. An important observation is the fact that auc is greater
than F1 score. This is due to the previously analyzed data disparity, with the data
set with the largest number of examples being the unsafe category; then we can affirm
that our model is more robust in identifying secure and non-secure examples. We
also observe that the metrics auc and F1 score present a value close to each other,
giving us to understand that these models achieve stability when evaluating the data.
This stability is strongly related to: (i) how well it identifies the classes, (ii) how many
samples it manages to classify correctly, and (iii) the relationship between successes and
errors in the prediction. Additionally, in Figure 5.6 we show a set of images generated
by our generating model 5.1 (b). The good quality of the generated images of size
32× 32× 3 is observed, which can be compared and confused with real images.

5.5 Website

In the present work, the need was seen to have a web system with the purpose of
reconciling interaction and visualization of the results of the data training in a quick
and simple way. Likewise, it is possible to observe the results and metrics reported for
each value of the variable δ. It is also possible to visualize the results of each cross-
validation by reporting the previously defined metrics, the AUC graphs calculated from
the Precision-Recall and the average of said metrics. Also, a summary of the results of
each method used. The web system has a simple design, focused mainly on presenting
training results, as well as a direct comparison between each method used. The web
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Figure 5.7: This tab corresponds to the results of the cross-validations and a summary
of the reported metrics, as well as the graphs associated with the value of each metric
for each value of δ. Note: this image corresponds to a model from the transfer-learning
group. Source: The author.

system is composed of 3 main panels: (i) Baseline results; (ii) Results of the Fine-
Tuning models; and (iii) “SSL GAN” results. In Figure 5.7 we show the appearance
of the website. Starting with a table where the metrics obtained from each method in
the training and test data sets are reported. It can be seen that to see the training
results in detail, just click on the name of the method and you will be redirected to a
tab with details such as the cross-validations, the graphs of each Precision-Recall and
the general graph of the textitAUC, accuracy and F1 score reported for each value of
δ.

5.6 Final Considerations

The results of the evaluations of the models previously described in Chapter 4 have been
presented, as well as the metrics reported in each model using a 5-set cross-validation.
For the experiments, the data was divided into 80 % for training and 20 % for testing.
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From the results obtained, we observe that the semi-supervised model presents a more
stable behavior with respect to the others (when observing the values of the reported
metrics). We observed that not only the AUC, but also the accuracy and F1 score
resulted in a high and very close value, which was expected. In the following, we
present the discussions and limitations.
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Chapter 6

Discussions and Limitations

6.1 Discussions

In this work, a methodology has been described that allows studying and analyzing
the Place Pulse 2.0 data set with the aim of finding and highlighting the possible
limitations it may present; This motivation is because in the vast majority of works
reviewed, they always focus more on the search for a model (increasingly more complex)
that has the best performance with Place Pulse 2.0. However, none of them performed
any prior analysis of the data.

6.1.1 Exploratory analysis of the data set Place Pulse 2.0

The analysis of Place Pulse 2.0 begins by calculating the 111,390 perception scores in
the safety category on all streets using the Equation 3.1 described in Chapter 3, the final
values of which are in a range from 0 (not very confident) to 10 (very confident). During
the calculation process, the idea was raised of analyzing the data by defining geographic
regions called “geographic generalization levels” that cover the comparisons made in 2
images at the following levels: (i) same city; (ii) same country (including all cities in
that country); (iii) same continent; and (iv) global (all data). Once these calculations
were carried out, we were able to observe 2 problems: (a) the loss of information: as
shown in Table 3.3, we see that as we use a smaller region, the number of images
decreases considerably; (b) the distribution of perception scores is unreliable, as shown
in Figure 3.5. We see that in cities with few compared images (e.g. Amsterdam)
they present scores with greater concentration at 3.33 and 6.66; this is because the
calculation of perception scores also depends on the number of comparisons made (see
Figure 3.5 (a)).

This behavior is evident in all cities. At the country level, the distribution will
change depending on how many cities are in that country. For example, Brazil has 3
cities and for the data from Rio de Janeiro a slight but insufficient change is observed
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(see Figure 3.5 (b)). Likewise, in the case of the USA, which contains 17 cities, it is
observed that the number of comparisons is not sufficient (see Figure 3.5 (c)). At the
continent level we can already observe a significant change in distribution. However,
in continents with few cities such as South America, Africa, and Asia, this lack of
comparisons is still observed. The opposite is true for North America (17 cities) and
Europe (22 cities). From these results, we conclude that it is not possible to use Place
Pulse 2.0 without considering comparisons at a global level (all cities) due to the few
comparisons made between images of the same city.

Another result of observing the distributions is the number of images concentrated
in the interval of 4.5 and 5.5, as we describe in Section 3.2 resembles a Gaussian
distribution with a center close to the value of 5.0, this being value close to the average of
all images (5.18). For this reason, to label the images in the safe and unsafe categories,
a threshold of 5.0 was established. From this threshold, it is observed that we have a
data disparity, that is, the number of images of the safe class was different from that of
the non-safe class. As Figure 3.6 shows, it occurs in almost all cities. This threshold is
not possible to change since by decreasing the threshold, we would be giving priority to
the images that were compared in greater quantity, and on the contrary, by increasing
the threshold we would be increasing the disparity of images.

6.1.2 Prediction of urban safety perception

Following the analysis of the data, we focus on evaluating different types of approaches
based on the convolutional network model, which can present good performance against
the nature of Place Pulse 2.0, likewise, good performance in the urban safety perception
classification task (or simply safety perception). For this, a pipeline of experiments was
proposed based on two types of learning already mentioned: (i) Supervised Learning
and (ii) Semi-Supervised Learning. The metrics used to evaluate our models are AUC,
F1 Score generated by Presicion-Recall and Accuracy. It was decided to use these
metrics because the main task is classification of two categories (secure and non-secure).
For supervised learning, it was decided to use two techniques: transfer-learning and
fine-tuning, which used networks such as VGGNet, ResNet50 and Xception. The three
networks pre-trained on ImageNet, in addition, for the VGGNet model the pre-trained
weights from Places365 were also used due to the nature of the data; which are images
of exterior and interior places such as residential areas, streets or restaurants.

The first result corresponds to the transfer-learning models, called “TL”, which
consist of using models based on DCNN as feature extractors (outputs of the last
layer). As described in Section 5.2, we trained these extractors using 4 linear and non-
linear methods, the results of which are in Table 5.2. We observe that despite having
an accuracy of 65 % the metrics F1 score and AUC do not show good performance
and this is because the model is predicting with better accuracy the class with the
greatest number of examples. Additionally, it was decided to experiment with other
models such as ResNet50 and Xception previously trained on ImageNet taking into
account two points: the number of parameters (less than 23 million each) and the

66 Master’s Program in Computer Science - UCSP



CHAPTER 6. Discussions and Limitations

higher performance than VGGNet on said database. However, only ResNet50 showed
similar results to the 4 main models, and Xception was discarded. The main results of
the “TL” models helped us understand the behavior of the data when trained. Using
the variation of the parameter δ defined in Chapter 5 and shown in Figure 5.1, we
observe the values of the reported metrics from δ=0.05 to δ=0.5, showing us that
despite having a high accuracy at δ=0.5, it does not mean that it is a robust model
with good performance (see Figure 5.2). Likewise, we verified that for the “geographic
level” such as city, countries and continent it was not sustainable to use variations
in the value of δ, since in some cities there were a low number of images that made
training impossible.

The second result corresponds to the fine-tuning models, called “FT”, they used
the same architectures defined for transfer-learning except for Xception. For the ex-
periments, we freeze and train from the fifth convolution block for the models based on
VGGNet and in the case of ResNet50 from the residual block 14. The results shown in
Table 5.3 show an accuracy close to those reported in the“TL”group models. However,
there was a notable improvement in AUC and F1 score thus showing that the learn-
ing and prediction of the model with respect to both classes improved, because these
metrics reflect how good a model is at differentiating the evaluated classes. Figures 5.4
and 5.3 show a colormap of the accuracy of each trained model evaluated in each city.
The main motivation was to observe the performance of models trained and evaluated
in different cities. It is observed that the Global model for all the 4 trained models
maintains good performance, and therefore, it is because Global includes the data from
all cities. In the other cities it is observed that there are cities in which they have high
accuracy and in others they do not, and that depending on the model, this varies. Fur-
thermore, it is observed that all models maintain the same performance evaluated in
cities such as Chicago, Copenhagen, Denver, Dublin, Minneapolis, Montreal, Seattle,
New York and Portland.

The third result corresponds to the semi-supervised GAN model, which consists
of using a set of data with the respective labels between 1 for safe and 0 for not safe that
will be released in the supervised model, We will also use another set of real data with-
out any associated label, which will be used to train the generator and the unsupervised
model. Just like a GAN vanilla, our “SSL GAN”works in a similar way, except for the
difference in the discriminator. The discriminator is responsible not only for discerning
between real or fake, it will also identify which class an evaluated image belongs to,
whether it is a generated one or one from the data set. As we explained in Section 4.3,
the choice of a semi-supervised model was due to the limitations previously found in
the data set. Due to the difference in training time between the different models, the
“SSL GAN” was only trained using all the data. Table 6.1 gives an approximate idea
of the training time used by each model in each data set (global or city), it is observed
that the “SSL GAN” time is much higher compared to the other models. We mention
that the reported time corresponding to “56 city” is an average training time for all
cities separately.
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Training time for each model
Method Data type Average time

SSL GAN (32× 32) Global ∼1 week and a half
FT VGG Global ∼8 hours
FT VGG 56 Cities ∼6 hours
FT VGG GAP Global ∼7 hours
FT VGG GAP 56 Cities ∼5 hours
TL VGG Global ∼15 minutes
TL VGG 56 Cities ∼10 minutes
TL VGG GAP Global ∼9 minutes
TL VGG GAP 56 Cities ∼6 minutes

Table 6.1: Table of average training times carried out for each model performing the
5 cross-validations. For the case of “TL” we are reporting the total average of training
the 4 models for each case.

6.2 Limitations

The study of urban perception is a very complex field since it is not possible to describe
a general perception (Wilson y Kelling, 1982) and the perception for each person varies
depending on the environment where a person lives (Keizer et al., 2008), that is, that
perception is very relative and differentiated for each person. Thus, we present the
limitations found in the present study, which are strongly linked to the data set. As
mentioned above, the Place Pulse 2.0 dataset analyzed allowed us to understand and
establish a methodology focused directly on the data, rather than the conventional
method of thinking of some complex model to fit.

6.2.1 Individual perception of participants

The construction of the Place Pulse data set was from comparisons between two images
through a website. For this, various volunteers carried out the vote on a set of com-
pletely random images. That said, some images may have been compared and voted
on by one or a few specific volunteers. This generates a difficulty because a person’s
perception of security is influenced by the environment where they live, generating a
biased individual criterion. This is a problem when trying to carry out a specialized
study by city, country, continent because the images were compared and voted on by
various users from different places.

This limitation was not possible to solve, since it is a problem inherent to the
data set, starting from its idealization and how it was constructed (they did not take
into account individual perceptions, individuals from a similar region, etc.).
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CHAPTER 6. Discussions and Limitations

6.2.2 Little amount of data/images

At a general level, Place Pulse 2.0 is made up of 1.22 million comparisons in total, in
Table 3.2 (b) we show the respective statistics of each category, seeing that the category
corresponding to security presents 368,926 comparisons, this being around 30.14 % of
the total comparisons. Likewise, although a total of 111,390 images in said category
were compared, the data set only has 110,988 images. Comparing with other image
datasets with millions of data, 111 thousand images does not compare, furthermore,
datasets such as CIFAR10 or MNIST with 60,000 and 50,000 respectively, have a
similar proportion number of images per class. In our case, the number of images is
not homogeneous per city, that is, we have the case of the city of Atlanta with 4,034
and cases like Amsterdam with 637 images (see Figure 3.3 (a) ). Which, by not having
a homogeneous set for each case, does not allow for a specialized analysis in each case.

This limitation was possible to mitigate through the use of the semi-supervised
model “SSL GAN”, the small number of images and the disproportion of images per
city was cushioned through the synthetic images generated in each iteration, these
being used in training.

6.2.3 Generalization across city characteristics

Due to the number of cities and the great variety of the number of images of each
city present in Place Pulse 2.0, it is not possible to find a model that manages to
generalize a prediction with high precision. This occurs in cases such as Atlanta or
Berlin, whose images are composed (mostly) of a road and trees or grass on the sides;
On the other hand, we have fully urbanized cities like Boston. Likewise, unique (or
differentiated) characteristics are found in Tokyo and Kyoto, where the streets present
a clear difference from other cities, whether in Europe or North America where there
are skyscrapers and very tall buildings.

Furthermore, as we describe in Table 3.3 as we studied the possible “geographic
levels of generality” we understood that we had a greater loss of information the more
specific the level. For example, at the global level we have at the “geographic level”
global we have 111,390 images and at the“geographic level” city we have 20,143 images,
meaning a reduction of almost 82 % in the number of images of the “security” category.

This limitation was not possible to mitigate because it is strongly linked to the
construction of the data set, evaluating two images randomly without taking into ac-
count which images they are compared or how many times they are compared, makes
the set of data has to be analyzed in total. Thus leaving no possibility of carrying out
specific studies along different “levels of geographical generalization”.
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6.3. Final Considerations

6.2.4 Dataset disparity

From the limitations set out above, from the calculation of the perception scores carried
out, we observe from Figure 3.5 that for the global level, cities have a distribution
similar to a Gaussian distribution with a close center in 5.0, whether in countries with
2 or more cities or one city. The median of the scores is the value 4.72 which is very
close to 5.0. Using our threshold of 5.0, we have a disparity of 11,233 images from
the median. Using the median as a threshold, that is, dividing 50 % as safe and 50 %
as not safe does not make any relevant difference when training the data, in addition,
manually observing a subset of the 11,233 images corresponding to such scores do not
have a visual appearance that would deserve to be labeled as safe. This limitation was
possible to mitigate through the use of the semi-supervised model “SSL GAN”, the
disparity of data present was mitigated through the generation of synthetic images by
the generator during, which were added to the training in each iteration.

6.3 Final Considerations

In this Chapter we have described in detail the discussions of the experiments carried
out and also the limitations found in the Place Pulse 2.0 data set that were exposed
in Chapter 3. We also discuss how it was possible to solve these limitations found in
our analysis. Unfortunately, it was not possible to solve all of them, since the nature
of the data and its construction prevent a more in-depth analysis based on individual
perception.
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Chapter 7

Conclusions

In this work an exploratory analysis of the Place Pulse 2.0 data set was presented;
through the different studies and approaches that we explain in detail in Chapter 3. As
a result of the exploratory analysis, limitations were found in the data set studied. Of
the four limitations found and explained, we were only able to computationally resolve
three: Few image samples in general, disproportion in the number of images per city,
and class disparity. The only unresolved limitation is strongly related to how the data
set was constructed, based on each person’s perception and choice of which image is the
safest. That is, the data set is limited to the individual perception of each person. It
was observed that during the construction of the data, random images were compared
and evaluated by a random user. Likewise, it was found that the number of images used
by each city is not proportional, having cities with approximately 4 thousand images
(Sao Paulo) and others with less than 700 (Amsterdam), which prevents an individual
analysis for each city. This disproportion does not allow generalization, which is forcing
a dependence on each other (through the calculation of perception scores). However,
it was possible to combat this data disproportion through semi-supervised learning, a
generative model like GAN allows us to artificially extend the data set through the
generation of new data.

Consequently, the results of the evaluations of different classifier models were
analyzed and presented using techniques such as Transfer-Learning, Fine-Tuning and
GANs. The evaluations were carried out reporting 3 main metrics: F1 score which is
an average between Precision-Recall ; Accuracy which reports how many images were
correctly predicted in each category; and AUC to determine the proportion in which
both categories were correctly classified. The main metric used was the AUC because
having a data disparity, it is also observed that as a specialized model is trained, a
better AUC value is obtained. We notice that an increase is obtained from ∼59 %
(Transfer-Learning) to ∼81 % (GAN), we also see this behavior in the other two
metrics : accuracy increases from ∼66 % to ∼81 % and the F1 score increases from
∼51 % to ∼81 %. This demonstrates our initial hypothesis, indicating that a model
that can resolve the limitations of the data was necessary. For that case, a GAN model
against data with disparity mentioned and discussed in detail in the previous chapter
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has optimal performance. Finally, we highlight that our GAN is a stable model against
the Place Pulse 2.0 data set whose nature is images of streets from different cities. As
a final tool, a web system was presented with which it is possible to carry out easy
interaction and concise visualization of the results obtained by each model, such as the
results of each evaluation carried out in the cross-validations (reporting the 3 metrics
used). As future work, we plan to extend the work by adding more data and increasing
the resolution of the GAN. This will serve to identify more specific characteristics of
each place.
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timo acceso: 11-Agosto-2022].

Wikipedia. Supervised learning. https://en.wikipedia.org/wiki/Supervised_
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