MorArch: A Software Architecture for
Interoperability to improve the communication
in the Edge layer of a smart IoT ecosystem

Juan Moreno-Motta!, Felipe Moreno-Vera?, and Frank A. Moreno?®
juan.moreno2@unmsm.edu.pe, felipe.moreno@ucsp.edu.pe,
fmorenov@uni.pe

! 'Universidad Nacional Mayor de San Marcos, Lima, Pert
2 Universidad Catélica San Pablo, Arequipa, Peri
3 Universidad Nacional de Ingenierfa, Lima, Pert

Abstract. Currently, IoT has evolved to such an extent to extend to all
corners of each place through devices that are connected to a network
and generate information. In most cases, to be processed for a specific
purpose or storage as historical data; an IoT ecosystem is implemented
to manage those tasks between different devices, frameworks, or appli-
cations. Besides, more complex IoT ecosystems require more complex
architecture to manage the information flow, at this level, we found a
problem called interoperability. This problem is not limited to the com-
patibility of adding/removing devices to an ecosystem, it is also expected
that the information generated by devices and processed comply with a
standard optimizing the data transmission. In this work, we present a
new software architecture pattern to avoid the problem of interoperabil-
ity through the process of exchange information between devices and
prevent store heterogeneous information coming from different layers of
an IoT ecosystem.

Keywords: Interoperability - [oT - data encode - data decode - protocol
buffer - Edge Computing - REST API - Software Architecture - IoT
Ecosystem - Architecture - Fog Computing - Edge Computing - SOAP -
REST - web services.

1 Introduction

The Internet of Things (IoT) is a technology that has been emerging and con-
verging of many technologies for all-purpose solutions such as health, environ-
ment, manufacturing, energy-saving, citizen security, etc. According to Guinard
[3], IoT is a system of physical objects that can be organized, controlled, or
connected with electronic devices that communicate through various network
interfaces and can finally be connected to the Internet.

One study about the 7 main challenges in IoT data provenance [7], mentions
that interoperability is one of the challenges related to the origin of the data
making it more difficult to deploy heterogeneous systems. Despite the current

https://www.unmsm.edu.pe
https://ucsp.edu.pe
https://www.uni.edu.pe

2 J. Moreno-Motta et al.

techniques, they remain very challenging in their implementation and optimiza-
tion. Then, in two research about those challenges, Pace et al. [§] and Madaan
et al. [9] said that is complex to integrate all information generated by all sys-
tems with different devices, brands, hardware design, protocols, body message
encode-decode, different programming languages, different data structures, etc.

Interoperability is defined as the extent to which different systems and de-
vices can exchange data, and interpret that shared data. For two systems to be
interoperable, they must be able to exchange data and subsequently present that
data such that it can be understood by a user. It’s the form of computing where
data is stored on multiple servers and can be accessed online from any device.

In 2014, Oliver Kleine [1] estimated that IoT devices will be increased at least
1.7 billions at 2017 and Utkarshani Jaimini [2] said the storage for those devices
surpass 150 Exabytes in 2020. Some concepts in IoT used in Interoperability
are Cloud computing, Fog Computing, and Edge Computing. The first one is
commonly the standard of IoT data storage [2I]. For the Internet of Things, this
means securely storing and managing a lot of data and having immediate access
to it from multiple devices, anytime, anywhere.

Fog computing refers to computing infrastructure close to data sources, where
many connections occur with low bandwidth and minimal data transmission and
the data processing is performed at local networks, although servers themselves
are decentralized [22]. Edge computing refers to the data processing informa-
tion directly on it, without being sent to the centralized servers like Fog or
Clouds. In this way, any device connected to the Internet is capable of process-
ing the received data -through a short-term analysis- and bouncing part of this
information to the cloud, which simplifies the communication chain and reduces
potential points of error.

2 Present context and previous works

Interoperability as we defined above, is the way to communicate different systems
or devices, in most cases it can be very complex at the moment of design one
architecture capable to support the processing and amount of data.

2.1 Interopreability architectures

This problem appears in IoT solutions proposals with a specific task like AAL-
IoTSys (Active and Assisted Living) [I0] which is a platform oriented to Ambient
Assisted Living (AAL). AAL-IoTSys is a prototype based on Wireless Sensor
Network (WSN) with heterogeneous devices using a Binary encoder to trans-
fer information between low power devices. Another solution based on AAL is
INTER-IoT [8], based on AAL, implements an interoperable medical application
between BodyCloud and universal AAL platform, to save and analyze medical
historical data about their patients.

In 2017, Talavera et al. [4] study 720 IoT solution in topics like Agribusiness
and Environment of which they select around 72 projects to study in deep.

Software Architecture for Interoperability 3

INTER-loT

Wearable
Lifestyle sensors

monitoring in mobility non-mobile remote

through wearable devices 4 \ monitoring

Fig. 1: Pace et al. INTER-IoT Architecture, a merge of BodyCloud and univer-
salAAL [§].

From this study, they propose a general architecture for Agro applications, but
they consider as challenging the way to implement a standard, compatible, and
security guarantee interoperability service between devices in the edges and cloud
services.

Also, in 2017 Woznowski et al. [5] develop SPHERE (A Sensor Platform for
Healthcare in a Residential Environment), in this project they have determined
that there are 9 requirements that the IoT needs to cover to implement a smart
city, but the most difficult requirement to guarantee and implement was Interop-
erability. Based on SPHERE, an improvement was proposed Elsts et al. [6], this
work considers that IoT systems must comply with existing low-power IoT stan-
dards and protocols to (1) be susceptible to future extensions with third-party
components; (2) reduce learning time for new staff.

S Em ey - Software-defined M H M

S T Service J Cloud Networking Management

T . (5D} |
s
e Cloud Computing m Cloud
.
% . c

Network
Function 1P
Cﬁ Vimi:mmn Network
T Senvice J Cloud
Smat Phone

o] \ r
[= : L e S ?f e
Use Prnte ar Pubic ‘.‘ s o t § Mobile
: b

Semart TV

3

Fig.2: (a) Architecture proposed by Kum. [I5] and (b) Architecture proposed
by Luan. [16].

Futhermore, another solution to allow IoT interoperability was based on
web semantic [I1] using the JSON-LD method (JavaScript Object Notation for

4 J. Moreno-Motta et al.

Linked Data) [20]. Using this method they can create a description of data in-
formation and link objects and properties in a JSON file, then they have a piece
of information about their components and can identify if some information
corresponds to a specific component.

Other approach based on REST API for interoprability in Web of Things was
proposed by Sun et al. [12], this work using the JSON format compares Micro-
services architecture against Monolithic architecture. They use REST API to
communicate all devices including the IoT ecosystem, the control of the envi-
ronment through the central service is dynamic.

Based on some previous works [I2JT14], Kum et al. [I5] propose an archi-
tecture for Fog Computing applications, in this case, Fog Computing allows to
manage with more efficiency the information flow and reduce the latency between
devices and the central server, in other words, they found the best performance
doing information exchange between edge layer and cloud services trough middle
servers (see Fig[(a)).

Another approach proposed is the implementation of a routing gateway, this
work was proposed by Luan et al. [I6]. In this work, they define the gateway as
the manager of all information and communication between devices (edges), fog
nodes, and cloud servers. They design a network topology showed in Figure
(b) that improve the processing time and reduce the time to transfer data. The
aim was to communicate all devices with all servers and nodes was mobiles, the
architecture transmits data through mobiles (5G infrastructure) as end-users or
edge layer.

2.2 Interoperability protocols

Another study divides the concept of interpretability into three parts, Lim et
al. [13] define three different tiers: (i) Basic connectivity: provides a common
standard or path for data exchange between two sub-systems and established a
communication link; (ii) network: enables message exchange between heteroge-
neous systems across multiple communication links; and (iii) syntactic interop-
erability: provides a mechanism to understand the data structure in messages
exchanged between two entities. To solve this, the propose a framework with 3
components: provider, requester, and registry. They are communicate using a
SOAP web service and XML protocol.

One study about a comparison between the most common used protocols
in IoT interoperability was described by Nitin Naik [I8], In this document, the
author write a complete document about protocols, applications, operating sys-
tems, and other metric for different situations in IoT environments. They present
the protocols: HTTP, AMQP, MQTT and CoAP protocols (commonly used in
IoT solutions) and make some comparison based on their characteristics. Ac-
cording authors, the user can decide their relevant usage in IoT systems based
on their requirements and suitability.

In 2018, Petersen et al. [I9] make a demonstration of the performance of
the different formats, arriving at the conclusion that the binary format gener-
ated with Protobuff developed by Google is the one of better performance and

Software Architecture for Interoperability 5

Protocol Buffers vs JSON message length

of Lolta sensors Avvernge af ISON Lengt

(b)

Fig.3: (a) petersen et al. performance chart[19], and (b) lysogor et al. perfor-
mance chart[I7].

less memory use (see Figure 3] (a)), It is observed that Protocol-Buffer for any
communication protocol can serialize many more messages per second, being
one of these kinds of protocols ZeroMQ (an asynchronous messaging library)
performance. Additional, Lysogor et al. [I7] conduct a study on the transfer
and exchange of data in heterogeneous networks where network infrastructure
is absent. In their research, they focus on satellite networks and how to transfer
information between them, but they found a limitation on the size of the data
transmitted. They show that the binary format generated by Protocol Buffer
allows transferring more bytes than the JSON format (See Fig[3|(b)).

3 Proposal

Due to the analysis of all previous works mentioned above, we note that the
problem was centered on how to implement an IoT system that can manage
interoperability without troubles using a simple architecture. These works range
from microservices and go through semantic web such as JSON-LD, in both
cases, it requires processing capacity and memory that the servers have, but not
restricted devices.

Our focus in this study is on low-throughput and memory-capable devices.
The provenance of data is part of the interoperability challenge. We consider
that there are hostile communication environments, so the serialized data frame
must be very compact. The proposal is applied at the layer on the edge of an
IoT ecosystem. in figure 4] we show our architecture based on Cloud-Fog-Edge
computing. In the Cloud tier, we have the main and central server where is store
the main data about our application, the connection only can be accessed online.

We define our Fog tier as an ecosystem and is treated as a process to encode-
decode data, based on Micro-services architecture. The data exchange between
devices is very important when you need to get information or analyze it by
sector. For that, we divide all interactions with the aim to achieve better man-
agement of the complete system.

6

J. Moreno-Motta et al.

Cloud Computing

+Ime+|et

Ec em - Fi omputin
% Repository Processing % Managment Interface
A A
$ Services ‘)% Message Queue
A
$ Securiy $ Middleware $ File System

+Protocol Cofimunication

Device

Fig.4: MorAch: Architecture proposed.

Then, the main tier in charge to manage all communications, connections,

and exchange of information between cloud and devices is the fog tier. For this
purpose, we divide our fog tier eight important components:

Services: It is the layer of services that fog computing can deliver so that
other external devices can receive information (from sensors) or send an
action to be executed (actuators).

Repository: It is of persistence where the data frames will end up being
stored. In addition, we will have historical information about the data pro-
cessed and stored, this is going to keep the processing line of all information.
Processing: It is in charge of processing the binary data formats that are re-
ceived from the device component. The processing of the binary information
is to decode the encoded data using Protocol Buffer.

Management interface: This component is only for maintenance purposes
of our IoT ecosystem. This component can make a diagnostic by itself. It
checks the historical status stored in our repository component. Besides,
this component can fix issues founded in the processes. Additionally, it can
be accessed from a terminal that can be a PC, a laptop, or a cell phone.
This manager registers the types of devices, devices, middleware, and the
ecosystem.

Security: This component is a service consumed by the middleware. Each
device has a unique ID using a certificate to be validated in this component.

Software Architecture for Interoperability

7

Besides, this component ensures that the information received is undanger-

ous for the Ecosystem.

— MessageQueue: It is responsible for providing high availability and scalabil-
ity for all incoming data from several devices in real-time. This component
ensures that all the information provided by the devices and processing by

the middleware component will always be saved in the message queue.

— Middleware: It is responsible for receiving the binary format coming from
the devices. This component uses the processing component that has greater
processing capacity since it behaves like a server. This component also de-

pends on the file system component as an ecosystem configuration file.

— File system: This component store the description and properties of our
ecosystem. Store the security key generated by the historical data in the
Repository component in case of backups. Another purpose of this com-
ponent is to save the certificates of the IDs of the encrypted devices and

decoded data.

Additionally, we have 2 main tier: Cloud and devices with protocols like

internet (for Cloud services) and Protocol buffer to connect with devices.

— Devices: Represents all devices that connect to the ecosystem through the
middleware component. The encode process serialization is in binary format
performed by the protocol buffer method. In general, they can be sensors,
actuators, or any other devices which generate and send information to the

Ecosystem.

— Cloud: Is the final node that collect and show all pre-processed data from

Fog Ecosystem.

T C—

GW4

-
» & st '
T™D2 e

o
oL " S ™ “
™1 | (((((

T & S, l /

: GW1 GW2
2 Format 350N Farmat 350N -
o ~osol! o ~
— —_ rosar e
oy B
‘\ File System
e] o

File System

ES4 ES3

Fig.5: MorAch: Experimental Test implemented.

8 J. Moreno-Motta et al.
4 Experiments

For our experiments, we deploy a set of tiers (fog nodes, devices, cloud) and
make a connection between them. As we show in Figure [5| our experimental
IoT ecosystem is composed of a central server denominated as the cloud, four

fog ecosystems (named as the gateway) each of them has the eight components
defined above.

4.1 File system

We implement our file system using a NoSQL database, this kind of database
allows us to have a fast and good performance for multiple queries in a short
time (like real-time). As we show in the Figure [f]

Ecosistemas

+Eco_ld
+Descripcion_Eco

+getEcosistemal()

l

N R . Dispositivos Middleware
Tipos_Dispositivos
Td_Id o *Ma_ld
4 s ~
- Descripcion
. - © r@»—} +Descripcion_Md
+Descripcion_Td +Td_ld +Eco Id
+getTiposDispositivos() +Md_Id U\;iddlew 0
+gel are|
+getDispositivo()
Datos
+Datos_ld
+id
+Datos {json}

Fig.6: MorAch: File system implemented.

4.2 Data flow inside our Fog Ecosystem

To describe the process, we will use only one of the four Fog Ecosystem (see
Figure 7), the first step is to register the devices. In this case, we have five
devices that we will have D1, D2, D3, D4, and D5. Each of them has an additional
identifier (the type of device) as a category.

Each device needs to define the data block (to be encoded), the header has
the category of the device called ID and the identifier of the type of device called

Software Architecture for Interoperability 9

TID. The body of the message has the binary information of the encoded data
obtained by the device. This data frame is sent to the middleware.

In the middleware, the first step is to send the data frame to the Message-
Queue component, then using the component Processing we get the decoded
data. After this, the decoded data is validated by the Security Component (en-
sures that the data is not a broken file). Once is validated, this data is store in
the File System component verifying if exist the type, is not it will be registered
as a new type. If the amount of information is correct, the Repository component
will be updated, with this newly stored data, generating a new Fog Ecosystem
status.

In the Processing component, the decoded modules should be installed as a
micro-service (to be automatized). The Processing component will organize by
type of device all information received. In other words, the decoded method for
a new type of device will be prepared in this module and this method will be
stored in the File system component. All these steps allow scalability and do not
depend on the modules.

[Fog Computing} Es1 [Cloud Computin

o R

o1 AIA \formatBNARY

()
.

jes }(((((Format BINARY
i /
s S

Format BINARY File System
= II \Il
D4

Fig. 7: Architecture proposed for multiple solutions.

4.3 Results

We are implemented this architecture in real time applications to get our proof
of concept for this architecture, our test is a real time system monitors of data
measure from environment, we use Temperature, Humidity, Sound and Monox-
ide sensors, Raspberry Pi 3 Model B (1.4GH, Quad Core) board, Arduino board,
SQLite, protocol buffer to encode-decode data and Cloud services like Firebase
to storage data and analyze, compare, measure latency, compatibility and pro-
cessing or organizing data speed between each layer of the ecosystem (See Fig@.

For the performance test, we simulate parallel programs from different com-
puters that send messages in real-time (using RabbitMQ library) to our edge
nodes devices. This process reaches five million messages per second. Besides,

10 J. Moreno-Motta et al.

we send information in different formats, and in some cases, we sent broken files
to test the security component, for this test when is a broken file, the encode-
decode process has a different behavior than the other data and that is how our
Fog ecosystem identifies possibles vulnerabilities.

5 Conclusions

In this paper, we propose a new architecture for interoperability using Fog and
Edge layers to manage and improve smart communication and transfer infor-
mation between devices. The IoT architecture proposed can be integrated with
others, making it scalable once identifying the origin of the data, keeping them
all ordered and communicated among themselves.

Furthermore, we use Protocol-Buffer over our data format for all devices
(or at least most of them) to get a better performance and get less latency
transferring data and a high flexible fog architecture to manage all dynamic
changes in devices.

Acknowledgment

This work was supported by grant 234-2015-FONDECYT (Master Program)
from CienciActiva of the National Council for Science,Technology and Techno-
logical Innovation (CONCYTEC-PERU). Also, thanks to SCOTTABANK MAS-
TER PROGRAM GRANT for the financial support to Juan Moreno.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication
of this article.

References

1. Oliver Kleine, CoAP Endpoint Identification - A Protocol Extension for Crowd
Sensing in the mobile Internet, 2014 IEEE International Conference on Internet of
Things (iThings 2014), Green Computing and Communications (GreenCom 2014),
and Cyber-Physical-Social Computing (CPSCom 2014).

2. Jaimini, U. (2017). PhD Forum: Multimodal IoT and EMR based Smart Health
Application for Asthma Management in Children.

3. Guinard, D. D. and Trifa, V. M. (2016). Building the Web of Things. NY 11964:
MANNING.

4. Talavera, J. M., Tobén, L. E., Gémez, J. A., Alejandro, M. A., Aranda, J. M.,
Parra, D. T., Garreta, L. E. (2017). Review of IoT applications in agro-industrial
and environmental fields.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Software Architecture for Interoperability 11

Przemyslaw Woznowski, Alison Burrows, Tom Diethe, Xenofon Fafoutis, Jake
Hall, Sion Hannuna, Massimo Camplani, Niall Twomey, Michal Kozlowski, Bo
Tan, Ni Zhu, Atis Elsts, Antonis Vafeas, Adeline Paiement, Lili Tao, Majid
Mirmehdi, Tilo Burghardt, Dima Damen, Peter Flach, Robert Piechocki, Ian
Craddock, George Oikonomou, SPHERE: A Sensor Platform for Healthcare
in a Residential Environment. https://link.springer.com/chapter/10.1007/
978-3-319-44924-1_14. Last visited dec 2020.

Elsts, A., Oikonomou, G., Fafoutis, X. and Piechocki, R. (2017). Internet of Things
for Smart Homes: Lessons Learned from the SPHERE Case Study.

Alkhalil, A. and Ramadan, R. A. (2017). IoT Data Provenance Implementation
Challenges.

Pace, P., Gravina, R., Aloi, G., Fortino, G., Fides-Valero, A., Ibafiez-Sanchez,
G., Yacchirema, D. (2017). IoT platforms interoperability for Active and Assisted
Living Healthcare services support.

Madaan, N.; Ahad, M. A. and Sastry, S. M. (2017). Data integration in IoT ecosys-
tem: Information linkage as a privacy threat.

Yacchirema, D. C., Palau, C. E. and Esteve, M. (2017). Enable IoT Interoperability
in Ambient Assisted Living: Active and Healthy Aging Scenarios.

Androcec, D., Tomas, ,. B. and Kisasondi, T. (2017). Interoperability and
Lightweight Security for Simple IoT Devices.

Sun, L., Li, Y. and Memon, R. A. (2017). An Open IoT Framework Based on
Microservices Architecture.

Lim, N., Majumdar, S. and Nandy, B. (2010). Providing Interoperability for Re-
source Access Using Web Services.

Malik, S. and Kim, D.-H. (2017). A Comparison of RESTful vs. SOAP Web Ser-
vices in Actuator Networks.

Kum, S. W., Moon, J. and Lim, T.-B. (2017). Design of Fog Computing based IoT
Application Architecture.

Tom H. Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi We and Limin Sun
(2016). Fog Computing: Focusing on Mobile Users at the Edge.

Lysogor, 1., Voskov, L. and Efremov, S. (2018). Survey of Data Exchange Formats
for Heterogeneous LPWAN-Satellite IoT Networks.

Nitin Naik. Choice of effective messaging protocols for IoT systems: Mqtt,coap,
amqgp and http.In2017 IEEE International Systems EngineeringSymposium (ISSE),
pages 1-7, 2017

Petersen, B., Bindner, H., You, S. and Poulsen, B. (2017). Smart Grid Serialization
Comparison.

JSON-LD. https://json-1d.org/l Last visited dec 2020.

Mengistu, T., Alahmadi, A., Albuali, A., Alsenani, Y., y Che, D. (2018). A No
data centerSolution to cloud computing. doi:10.1109/CLOUD.2017.99

Paharia, B., y Bhushan, K. (2018). Fog computing as a defensive approach against
distributed denial of service (DDoS): a proposed architecture. 2018 9th Interna-
tional Conference on Computing, Communication and Networking Technologies
(ICCCNT), 1-7. doi:10.1109/ICCCNT.2018.8494060

https://link.springer.com/chapter/10.1007/978-3-319-44924-1_14
https://link.springer.com/chapter/10.1007/978-3-319-44924-1_14
https://json-ld.org/

	MorArch: A Software Architecture for Interoperability to improve the communication in the Edge layer of a smart IoT ecosystem

